A super-stretchable conductive film with strain-insensitive conductivity for stretchable EMI shielding materials and wearable capacitive strain sensors
Yinfeng Liu , Tong Wang , Jing Wang , Xin Chen , Jianwen Chen , Zunfeng Liu , Yutian Zhu
{"title":"A super-stretchable conductive film with strain-insensitive conductivity for stretchable EMI shielding materials and wearable capacitive strain sensors","authors":"Yinfeng Liu , Tong Wang , Jing Wang , Xin Chen , Jianwen Chen , Zunfeng Liu , Yutian Zhu","doi":"10.1016/j.compscitech.2024.110877","DOIUrl":null,"url":null,"abstract":"<div><div>Strain-insensitive conductive films as stretchable electromagnetic interference (EMI) shielding materials and stretchable electrodes are highly desired in wearable electronics. However, fabricating super strain-insensitive conductive films under a tensile strain higher than 400 % is still a great challenge. Herein, a super-stretchable conductive film based on the crumple-structured Ti<sub>3</sub>C<sub>2</sub>T<sub>x</sub> nanosheets-single walled carbon nanotubes/stretchable substrate double-layers is designed for the stretchable EMI shielding materials and electrodes. The resulting film exhibits a strain-insensitive electrical conductivity as high as 3.01 × 10<sup>3</sup> S/m even at a strain up to 500 %, which endows the film with a high and stable electromagnetic interference shielding efficiency (EMI SE) value of ∼45 dB. More interestingly, the EMI SE value of the film remains nearly constant even after 2000 cycles of 500 % tensile strain, indicating the excellent long-term service stability as a stretchable EMI shielding material. Moreover, a capacitive strain sensor with extra-wide sensing range, ultra-high stability, and excellent durability is successfully achieved by employing the as-prepared films as stretchable electrodes. This work proposes a convenient strategy of strain-insensitive conductive film aiming to design stretchable EMI shielding materials and electrodes for wearable electronics.</div></div>","PeriodicalId":283,"journal":{"name":"Composites Science and Technology","volume":"258 ","pages":"Article 110877"},"PeriodicalIF":8.3000,"publicationDate":"2024-09-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Composites Science and Technology","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0266353824004470","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, COMPOSITES","Score":null,"Total":0}
引用次数: 0
Abstract
Strain-insensitive conductive films as stretchable electromagnetic interference (EMI) shielding materials and stretchable electrodes are highly desired in wearable electronics. However, fabricating super strain-insensitive conductive films under a tensile strain higher than 400 % is still a great challenge. Herein, a super-stretchable conductive film based on the crumple-structured Ti3C2Tx nanosheets-single walled carbon nanotubes/stretchable substrate double-layers is designed for the stretchable EMI shielding materials and electrodes. The resulting film exhibits a strain-insensitive electrical conductivity as high as 3.01 × 103 S/m even at a strain up to 500 %, which endows the film with a high and stable electromagnetic interference shielding efficiency (EMI SE) value of ∼45 dB. More interestingly, the EMI SE value of the film remains nearly constant even after 2000 cycles of 500 % tensile strain, indicating the excellent long-term service stability as a stretchable EMI shielding material. Moreover, a capacitive strain sensor with extra-wide sensing range, ultra-high stability, and excellent durability is successfully achieved by employing the as-prepared films as stretchable electrodes. This work proposes a convenient strategy of strain-insensitive conductive film aiming to design stretchable EMI shielding materials and electrodes for wearable electronics.
期刊介绍:
Composites Science and Technology publishes refereed original articles on the fundamental and applied science of engineering composites. The focus of this journal is on polymeric matrix composites with reinforcements/fillers ranging from nano- to macro-scale. CSTE encourages manuscripts reporting unique, innovative contributions to the physics, chemistry, materials science and applied mechanics aspects of advanced composites.
Besides traditional fiber reinforced composites, novel composites with significant potential for engineering applications are encouraged.