{"title":"Fluorine-free superhydrophobic surfaces by atmospheric pressure plasma deposition of silazane-based suspensions","authors":"","doi":"10.1016/j.apsadv.2024.100645","DOIUrl":null,"url":null,"abstract":"<div><div>Atmospheric plasma is used to deposit superhydrophobic fluorine-free thin films onto a substrate. In this process, a suspension of micron size silica particles in a silazane based precursor is deposited in a single step using a dielectric barrier discharge plasma jet moving above the substrate. Thanks to an optimized configuration between the suspension injection and the plasma jet, the silazane precursor can be polymerized on the substrate surface but also, on silica particles to form additional micro size particles. The experimental parameters for optimal deposition are discussed, with emphasis on those leading to the formation of this dual roughness surface caused by the arrangement of both silica particles and particles generated from the precursor plasma polymerization. The combination of these two different length scales for the roughness leads to a decreased wettability of the coated substrate and a water contact angle larger than 150°.</div></div>","PeriodicalId":34303,"journal":{"name":"Applied Surface Science Advances","volume":null,"pages":null},"PeriodicalIF":7.5000,"publicationDate":"2024-09-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Surface Science Advances","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666523924000734","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Atmospheric plasma is used to deposit superhydrophobic fluorine-free thin films onto a substrate. In this process, a suspension of micron size silica particles in a silazane based precursor is deposited in a single step using a dielectric barrier discharge plasma jet moving above the substrate. Thanks to an optimized configuration between the suspension injection and the plasma jet, the silazane precursor can be polymerized on the substrate surface but also, on silica particles to form additional micro size particles. The experimental parameters for optimal deposition are discussed, with emphasis on those leading to the formation of this dual roughness surface caused by the arrangement of both silica particles and particles generated from the precursor plasma polymerization. The combination of these two different length scales for the roughness leads to a decreased wettability of the coated substrate and a water contact angle larger than 150°.