Teng Cheng, Jinxiang Wei, Hongwei Yu, Mingqing Tao, Minghao Mu, Bo Wang
{"title":"Improving the removal of fine particles in cyclone using heterogeneous vapor condensation enhanced by atomization","authors":"Teng Cheng, Jinxiang Wei, Hongwei Yu, Mingqing Tao, Minghao Mu, Bo Wang","doi":"10.1016/j.apt.2024.104684","DOIUrl":null,"url":null,"abstract":"<div><div>Using a heat exchanger to cool high humidity flue gas can create a supersaturated water vapor environment, allowing fine particles to grow into large droplets by heterogeneous vapor condensation, which is conductive to the removal of fine particles by traditional equipment. However, due to the limited condensable vapor obtained by cooling, this technology can only be used in the flue gas with low particle concentration. In this study, atomization droplets were added before the heat exchanger to improve the effect of heterogeneous vapor condensation at high particle concentration, and then coupled with a cyclone separator, which was used for the deep treatment of the flue gas after the wet dedusting system. The particle removal characteristics were investigated through laboratory experiments and bypass experiments in a metallurgical company. The experimental results show that the application of atomization-heterogeneous condensation reduced the particles concentration after cyclone by 74.2 % compared with that of single heterogeneous condensation. Temperature-drop and atomized volume affected the removal of particles with size < 2 μm and > 2 μm, respectively. The industrial flue gas bypass experiment indicated that the system had strong adaptability to fluctuating conditions. When the inlet particle concentration did not exceed 2000 mg/Nm<sup>3</sup>, the outlet particle concentration can be maintained within 20 mg/Nm<sup>3</sup>.</div></div>","PeriodicalId":7232,"journal":{"name":"Advanced Powder Technology","volume":"35 11","pages":"Article 104684"},"PeriodicalIF":4.2000,"publicationDate":"2024-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Powder Technology","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0921883124003601","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Using a heat exchanger to cool high humidity flue gas can create a supersaturated water vapor environment, allowing fine particles to grow into large droplets by heterogeneous vapor condensation, which is conductive to the removal of fine particles by traditional equipment. However, due to the limited condensable vapor obtained by cooling, this technology can only be used in the flue gas with low particle concentration. In this study, atomization droplets were added before the heat exchanger to improve the effect of heterogeneous vapor condensation at high particle concentration, and then coupled with a cyclone separator, which was used for the deep treatment of the flue gas after the wet dedusting system. The particle removal characteristics were investigated through laboratory experiments and bypass experiments in a metallurgical company. The experimental results show that the application of atomization-heterogeneous condensation reduced the particles concentration after cyclone by 74.2 % compared with that of single heterogeneous condensation. Temperature-drop and atomized volume affected the removal of particles with size < 2 μm and > 2 μm, respectively. The industrial flue gas bypass experiment indicated that the system had strong adaptability to fluctuating conditions. When the inlet particle concentration did not exceed 2000 mg/Nm3, the outlet particle concentration can be maintained within 20 mg/Nm3.
期刊介绍:
The aim of Advanced Powder Technology is to meet the demand for an international journal that integrates all aspects of science and technology research on powder and particulate materials. The journal fulfills this purpose by publishing original research papers, rapid communications, reviews, and translated articles by prominent researchers worldwide.
The editorial work of Advanced Powder Technology, which was founded as the International Journal of the Society of Powder Technology, Japan, is now shared by distinguished board members, who operate in a unique framework designed to respond to the increasing global demand for articles on not only powder and particles, but also on various materials produced from them.
Advanced Powder Technology covers various areas, but a discussion of powder and particles is required in articles. Topics include: Production of powder and particulate materials in gases and liquids(nanoparticles, fine ceramics, pharmaceuticals, novel functional materials, etc.); Aerosol and colloidal processing; Powder and particle characterization; Dynamics and phenomena; Calculation and simulation (CFD, DEM, Monte Carlo method, population balance, etc.); Measurement and control of powder processes; Particle modification; Comminution; Powder handling and operations (storage, transport, granulation, separation, fluidization, etc.)