Stefan Carosella, Sebastian Hügle, Florian Helber, Peter Middendorf
{"title":"A short review on recent advances in automated fiber placement and filament winding technologies","authors":"Stefan Carosella, Sebastian Hügle, Florian Helber, Peter Middendorf","doi":"10.1016/j.compositesb.2024.111843","DOIUrl":null,"url":null,"abstract":"<div><div>Recent advances in Automated Fiber Placement (AFP) and Filament Winding (FM) are driving steady improvements in technological understanding, enabling the production of more precise, cost- and material-efficient layups that pave the way for new applications. Evolving from automated Tape Laying Technology (ATL), AFP is a technology that not only mimics the manual laying process but also allows tailored fiber and tow alignment to deliver load-optimized patterns, stacking sequences and part structures leading to improved mechanical performance and significant waste reduction. The filament winding evolution towards automated Robotic Filament Winding put the technology in a position to manufacture highly complex lightweight structures in architecture. In this short review, recent developments in both automated fiber alignment technologies are presented and discussed, including the main advantages and materials used. Regarding the ATL and AFP process, developments in non-aerospace applications are considered. Besides a short overview of new placement technologies, advances in Tailored Fiber Placement (TFP) in the field of dry fiber placement are reported. Finally, new robotic filament winding applications in free-form and Coreless Filament Winding (CFW) in architecture are presented.</div></div>","PeriodicalId":10660,"journal":{"name":"Composites Part B: Engineering","volume":"287 ","pages":"Article 111843"},"PeriodicalIF":12.7000,"publicationDate":"2024-09-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Composites Part B: Engineering","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1359836824006553","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Recent advances in Automated Fiber Placement (AFP) and Filament Winding (FM) are driving steady improvements in technological understanding, enabling the production of more precise, cost- and material-efficient layups that pave the way for new applications. Evolving from automated Tape Laying Technology (ATL), AFP is a technology that not only mimics the manual laying process but also allows tailored fiber and tow alignment to deliver load-optimized patterns, stacking sequences and part structures leading to improved mechanical performance and significant waste reduction. The filament winding evolution towards automated Robotic Filament Winding put the technology in a position to manufacture highly complex lightweight structures in architecture. In this short review, recent developments in both automated fiber alignment technologies are presented and discussed, including the main advantages and materials used. Regarding the ATL and AFP process, developments in non-aerospace applications are considered. Besides a short overview of new placement technologies, advances in Tailored Fiber Placement (TFP) in the field of dry fiber placement are reported. Finally, new robotic filament winding applications in free-form and Coreless Filament Winding (CFW) in architecture are presented.
期刊介绍:
Composites Part B: Engineering is a journal that publishes impactful research of high quality on composite materials. This research is supported by fundamental mechanics and materials science and engineering approaches. The targeted research can cover a wide range of length scales, ranging from nano to micro and meso, and even to the full product and structure level. The journal specifically focuses on engineering applications that involve high performance composites. These applications can range from low volume and high cost to high volume and low cost composite development.
The main goal of the journal is to provide a platform for the prompt publication of original and high quality research. The emphasis is on design, development, modeling, validation, and manufacturing of engineering details and concepts. The journal welcomes both basic research papers and proposals for review articles. Authors are encouraged to address challenges across various application areas. These areas include, but are not limited to, aerospace, automotive, and other surface transportation. The journal also covers energy-related applications, with a focus on renewable energy. Other application areas include infrastructure, off-shore and maritime projects, health care technology, and recreational products.