Ye Yao , Jingyi Liu , Zhao Wang , Shiyu Yao , Fei Du
{"title":"Compact vacuum transfer devices for highly air-sensitive materials in scanning electron microscopy","authors":"Ye Yao , Jingyi Liu , Zhao Wang , Shiyu Yao , Fei Du","doi":"10.1016/j.micron.2024.103720","DOIUrl":null,"url":null,"abstract":"<div><div>Surface analysis experiments on air-sensitive substances are challenging to avoid their contact with air, leading to inaccurate results due to oxidation or hygroscopicity. To address this issue, we designed a compact vacuum transfer device (VTD) and applied it to scanning electron microscopy (SEM) and energy-dispersive X-ray spectroscopy (EDS) experiments. Our VTD features a split structure that can be opened and separated in the SEM specimen exchange chamber via magnetic control. This design allows the SEM manufacturer's stub to be fed directly into the SEM specimen chamber, preventing damage to the instrument's internal components and avoiding restrictions on specimen height. Additionally, the compact design maximizes the utilization of sample accommodation space. Besides, it can be flexibly customized in different sizes and types of stubs to adapt electron microscopes from various manufacturers. To confirm the reliability of our device, we applied it to several highly air-sensitive samples for morphology and chemical composition analysis by SEM and EDS. The EDS results showed that the atomic percentage of Na reaches 94.55 % after 14 minutes and 93.44 % after 30 minutes of storage when transferring metallic sodium. Furthermore, our VTD enables airtight recycling and re-transfer of samples after the SEM (-EDS) experiments. These results demonstrate that our device has excellent practicality and airtightness, making it suitable for medium- and long-distance sample transfer between laboratories on the campus.</div></div>","PeriodicalId":18501,"journal":{"name":"Micron","volume":"187 ","pages":"Article 103720"},"PeriodicalIF":2.5000,"publicationDate":"2024-09-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Micron","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0968432824001379","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MICROSCOPY","Score":null,"Total":0}
引用次数: 0
Abstract
Surface analysis experiments on air-sensitive substances are challenging to avoid their contact with air, leading to inaccurate results due to oxidation or hygroscopicity. To address this issue, we designed a compact vacuum transfer device (VTD) and applied it to scanning electron microscopy (SEM) and energy-dispersive X-ray spectroscopy (EDS) experiments. Our VTD features a split structure that can be opened and separated in the SEM specimen exchange chamber via magnetic control. This design allows the SEM manufacturer's stub to be fed directly into the SEM specimen chamber, preventing damage to the instrument's internal components and avoiding restrictions on specimen height. Additionally, the compact design maximizes the utilization of sample accommodation space. Besides, it can be flexibly customized in different sizes and types of stubs to adapt electron microscopes from various manufacturers. To confirm the reliability of our device, we applied it to several highly air-sensitive samples for morphology and chemical composition analysis by SEM and EDS. The EDS results showed that the atomic percentage of Na reaches 94.55 % after 14 minutes and 93.44 % after 30 minutes of storage when transferring metallic sodium. Furthermore, our VTD enables airtight recycling and re-transfer of samples after the SEM (-EDS) experiments. These results demonstrate that our device has excellent practicality and airtightness, making it suitable for medium- and long-distance sample transfer between laboratories on the campus.
期刊介绍:
Micron is an interdisciplinary forum for all work that involves new applications of microscopy or where advanced microscopy plays a central role. The journal will publish on the design, methods, application, practice or theory of microscopy and microanalysis, including reports on optical, electron-beam, X-ray microtomography, and scanning-probe systems. It also aims at the regular publication of review papers, short communications, as well as thematic issues on contemporary developments in microscopy and microanalysis. The journal embraces original research in which microscopy has contributed significantly to knowledge in biology, life science, nanoscience and nanotechnology, materials science and engineering.