{"title":"Novel insights into famotidine as a GSK-3β inhibitor: An explorative study in aluminium chloride-induced Alzheimer’s disease rat model","authors":"","doi":"10.1016/j.bbr.2024.115270","DOIUrl":null,"url":null,"abstract":"<div><div>Alzheimer's disease (AD), a chronic neurodegenerative disease, presents a substantial global health challenge. This study explored the potential therapeutic role of famotidine, a histamine (H2) receptor antagonist, as a glycogen synthase kinase-3β (GSK-3β) inhibitor in the context of AD induced by aluminium chloride (AlCl<sub>3</sub>) in a rat model. The intricate relationship between GSK-3β dysregulation and AD pathogenesis, particularly in amyloid-β (Aβ) production, formed the basis for investigating famotidine's efficacy. Molecular modelling revealed famotidine's efficient binding to GSK-3β, suggesting inhibitory potential. In behavioural assessments, famotidine-treated groups exhibited dose-dependent improvements in Morris Water Maze, Novel Object Recognition, and Y-Maze tests, comparable to the standard Rivastigmine tartrate group. Biochemical analyses showed that famotidine inhibits acetylcholinesterase, decreases lipid peroxidation, increases antioxidant activity, and mitigates oxidative stress. Moreover, famotidine significantly lowered the levels of GSK-3β, IL-6, and Aβ(1−42). The neuroprotective effects of famotidine were further supported by histopathological analysis. This comprehensive investigation underscores famotidine's potential as a GSK-3β inhibitor, providing insights into its therapeutic impact on AD induced by AlCl<sub>3</sub>. The study offers a promising avenue for repurposing famotidine due to its established safety profile and widespread availability, highlighting its potential in addressing the formidable challenge of AD.</div></div>","PeriodicalId":8823,"journal":{"name":"Behavioural Brain Research","volume":null,"pages":null},"PeriodicalIF":2.6000,"publicationDate":"2024-09-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Behavioural Brain Research","FirstCategoryId":"102","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0166432824004261","RegionNum":3,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BEHAVIORAL SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Alzheimer's disease (AD), a chronic neurodegenerative disease, presents a substantial global health challenge. This study explored the potential therapeutic role of famotidine, a histamine (H2) receptor antagonist, as a glycogen synthase kinase-3β (GSK-3β) inhibitor in the context of AD induced by aluminium chloride (AlCl3) in a rat model. The intricate relationship between GSK-3β dysregulation and AD pathogenesis, particularly in amyloid-β (Aβ) production, formed the basis for investigating famotidine's efficacy. Molecular modelling revealed famotidine's efficient binding to GSK-3β, suggesting inhibitory potential. In behavioural assessments, famotidine-treated groups exhibited dose-dependent improvements in Morris Water Maze, Novel Object Recognition, and Y-Maze tests, comparable to the standard Rivastigmine tartrate group. Biochemical analyses showed that famotidine inhibits acetylcholinesterase, decreases lipid peroxidation, increases antioxidant activity, and mitigates oxidative stress. Moreover, famotidine significantly lowered the levels of GSK-3β, IL-6, and Aβ(1−42). The neuroprotective effects of famotidine were further supported by histopathological analysis. This comprehensive investigation underscores famotidine's potential as a GSK-3β inhibitor, providing insights into its therapeutic impact on AD induced by AlCl3. The study offers a promising avenue for repurposing famotidine due to its established safety profile and widespread availability, highlighting its potential in addressing the formidable challenge of AD.
期刊介绍:
Behavioural Brain Research is an international, interdisciplinary journal dedicated to the publication of articles in the field of behavioural neuroscience, broadly defined. Contributions from the entire range of disciplines that comprise the neurosciences, behavioural sciences or cognitive sciences are appropriate, as long as the goal is to delineate the neural mechanisms underlying behaviour. Thus, studies may range from neurophysiological, neuroanatomical, neurochemical or neuropharmacological analysis of brain-behaviour relations, including the use of molecular genetic or behavioural genetic approaches, to studies that involve the use of brain imaging techniques, to neuroethological studies. Reports of original research, of major methodological advances, or of novel conceptual approaches are all encouraged. The journal will also consider critical reviews on selected topics.