{"title":"The effect of stress barriers on unconventional-singularity-driven frictional rupture","authors":"Barnaby Fryer , Mathias Lebihain , Corentin Noël , Federica Paglialunga , François Passelègue","doi":"10.1016/j.jmps.2024.105876","DOIUrl":null,"url":null,"abstract":"<div><div>Whether or not energy dissipation is localized in the vicinity of the rupture tip, and whether any distal energy dissipation far from the crack tip has a significant influence on rupture dynamics are key questions in the description of frictional ruptures, in particular regarding the application of Linear Elastic Fracture Mechanics (LEFM) to earthquakes. These questions are investigated experimentally using a 40-cm-long experimental frictional interface. Three independent pistons apply a normal load with a fourth piston applying a shear load, enabling the application of a heterogeneous stress state and stress barriers. After loading the frictional interface to a near-critical state, subsequent unloading of one normal-load piston leads to dynamic ruptures which propagate into the heterogeneous stress fields. The ruptures in these experiments are found to be driven by unconventional singularities, characterized by an ever-increasing breakdown work with slip, and as a result do not conform to the assumptions of LEFM. As these experimental stress barriers inhibit slip, they therefore also reduce the breakdown work occurring outside of the cohesive zone. It is shown that this distal weakening, far from the crack tip, must be considered for the accurate prediction of rupture arrest length. These experiments are performed in the context of a proposed stimulation technique for Enhanced Geothermal Systems (EGSs). It has previously been suggested, through theoretical arguments, that stress barriers could be induced through the manipulation of pore pressure such that there is reduced seismic hazard during the shear stimulation of EGSs. This stimulation technique, known as preconditioning, is demonstrated here to reduce the mechanical energy flux to the crack tip, <span><math><mi>G</mi></math></span>, while also increasing the fracture energy, <span><math><msub><mrow><mi>G</mi></mrow><mrow><mi>c</mi></mrow></msub></math></span>. Preconditioning is shown to be capable of arresting seismic rupture and reducing co-seismic slip, slip velocity, and seismic moment at preconditioning stresses which are reasonably achievable in the field. Due to the fully-coupled nature of seismic rupture and fault slip, preconditioning also reduces distal weakening and its contribution to the propagation of induced seismic ruptures. In a similar vein, heterogeneous pore pressure fields associated with some seismic swarms can be used to explain changes in stress drop within the swarm without recourse to material or total-stress heterogeneity.</div></div>","PeriodicalId":17331,"journal":{"name":"Journal of The Mechanics and Physics of Solids","volume":"193 ","pages":"Article 105876"},"PeriodicalIF":5.0000,"publicationDate":"2024-09-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of The Mechanics and Physics of Solids","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022509624003429","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Whether or not energy dissipation is localized in the vicinity of the rupture tip, and whether any distal energy dissipation far from the crack tip has a significant influence on rupture dynamics are key questions in the description of frictional ruptures, in particular regarding the application of Linear Elastic Fracture Mechanics (LEFM) to earthquakes. These questions are investigated experimentally using a 40-cm-long experimental frictional interface. Three independent pistons apply a normal load with a fourth piston applying a shear load, enabling the application of a heterogeneous stress state and stress barriers. After loading the frictional interface to a near-critical state, subsequent unloading of one normal-load piston leads to dynamic ruptures which propagate into the heterogeneous stress fields. The ruptures in these experiments are found to be driven by unconventional singularities, characterized by an ever-increasing breakdown work with slip, and as a result do not conform to the assumptions of LEFM. As these experimental stress barriers inhibit slip, they therefore also reduce the breakdown work occurring outside of the cohesive zone. It is shown that this distal weakening, far from the crack tip, must be considered for the accurate prediction of rupture arrest length. These experiments are performed in the context of a proposed stimulation technique for Enhanced Geothermal Systems (EGSs). It has previously been suggested, through theoretical arguments, that stress barriers could be induced through the manipulation of pore pressure such that there is reduced seismic hazard during the shear stimulation of EGSs. This stimulation technique, known as preconditioning, is demonstrated here to reduce the mechanical energy flux to the crack tip, , while also increasing the fracture energy, . Preconditioning is shown to be capable of arresting seismic rupture and reducing co-seismic slip, slip velocity, and seismic moment at preconditioning stresses which are reasonably achievable in the field. Due to the fully-coupled nature of seismic rupture and fault slip, preconditioning also reduces distal weakening and its contribution to the propagation of induced seismic ruptures. In a similar vein, heterogeneous pore pressure fields associated with some seismic swarms can be used to explain changes in stress drop within the swarm without recourse to material or total-stress heterogeneity.
期刊介绍:
The aim of Journal of The Mechanics and Physics of Solids is to publish research of the highest quality and of lasting significance on the mechanics of solids. The scope is broad, from fundamental concepts in mechanics to the analysis of novel phenomena and applications. Solids are interpreted broadly to include both hard and soft materials as well as natural and synthetic structures. The approach can be theoretical, experimental or computational.This research activity sits within engineering science and the allied areas of applied mathematics, materials science, bio-mechanics, applied physics, and geophysics.
The Journal was founded in 1952 by Rodney Hill, who was its Editor-in-Chief until 1968. The topics of interest to the Journal evolve with developments in the subject but its basic ethos remains the same: to publish research of the highest quality relating to the mechanics of solids. Thus, emphasis is placed on the development of fundamental concepts of mechanics and novel applications of these concepts based on theoretical, experimental or computational approaches, drawing upon the various branches of engineering science and the allied areas within applied mathematics, materials science, structural engineering, applied physics, and geophysics.
The main purpose of the Journal is to foster scientific understanding of the processes of deformation and mechanical failure of all solid materials, both technological and natural, and the connections between these processes and their underlying physical mechanisms. In this sense, the content of the Journal should reflect the current state of the discipline in analysis, experimental observation, and numerical simulation. In the interest of achieving this goal, authors are encouraged to consider the significance of their contributions for the field of mechanics and the implications of their results, in addition to describing the details of their work.