The effect of stress barriers on unconventional-singularity-driven frictional rupture

IF 5 2区 工程技术 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY Journal of The Mechanics and Physics of Solids Pub Date : 2024-09-25 DOI:10.1016/j.jmps.2024.105876
Barnaby Fryer , Mathias Lebihain , Corentin Noël , Federica Paglialunga , François Passelègue
{"title":"The effect of stress barriers on unconventional-singularity-driven frictional rupture","authors":"Barnaby Fryer ,&nbsp;Mathias Lebihain ,&nbsp;Corentin Noël ,&nbsp;Federica Paglialunga ,&nbsp;François Passelègue","doi":"10.1016/j.jmps.2024.105876","DOIUrl":null,"url":null,"abstract":"<div><div>Whether or not energy dissipation is localized in the vicinity of the rupture tip, and whether any distal energy dissipation far from the crack tip has a significant influence on rupture dynamics are key questions in the description of frictional ruptures, in particular regarding the application of Linear Elastic Fracture Mechanics (LEFM) to earthquakes. These questions are investigated experimentally using a 40-cm-long experimental frictional interface. Three independent pistons apply a normal load with a fourth piston applying a shear load, enabling the application of a heterogeneous stress state and stress barriers. After loading the frictional interface to a near-critical state, subsequent unloading of one normal-load piston leads to dynamic ruptures which propagate into the heterogeneous stress fields. The ruptures in these experiments are found to be driven by unconventional singularities, characterized by an ever-increasing breakdown work with slip, and as a result do not conform to the assumptions of LEFM. As these experimental stress barriers inhibit slip, they therefore also reduce the breakdown work occurring outside of the cohesive zone. It is shown that this distal weakening, far from the crack tip, must be considered for the accurate prediction of rupture arrest length. These experiments are performed in the context of a proposed stimulation technique for Enhanced Geothermal Systems (EGSs). It has previously been suggested, through theoretical arguments, that stress barriers could be induced through the manipulation of pore pressure such that there is reduced seismic hazard during the shear stimulation of EGSs. This stimulation technique, known as preconditioning, is demonstrated here to reduce the mechanical energy flux to the crack tip, <span><math><mi>G</mi></math></span>, while also increasing the fracture energy, <span><math><msub><mrow><mi>G</mi></mrow><mrow><mi>c</mi></mrow></msub></math></span>. Preconditioning is shown to be capable of arresting seismic rupture and reducing co-seismic slip, slip velocity, and seismic moment at preconditioning stresses which are reasonably achievable in the field. Due to the fully-coupled nature of seismic rupture and fault slip, preconditioning also reduces distal weakening and its contribution to the propagation of induced seismic ruptures. In a similar vein, heterogeneous pore pressure fields associated with some seismic swarms can be used to explain changes in stress drop within the swarm without recourse to material or total-stress heterogeneity.</div></div>","PeriodicalId":17331,"journal":{"name":"Journal of The Mechanics and Physics of Solids","volume":"193 ","pages":"Article 105876"},"PeriodicalIF":5.0000,"publicationDate":"2024-09-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of The Mechanics and Physics of Solids","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022509624003429","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Whether or not energy dissipation is localized in the vicinity of the rupture tip, and whether any distal energy dissipation far from the crack tip has a significant influence on rupture dynamics are key questions in the description of frictional ruptures, in particular regarding the application of Linear Elastic Fracture Mechanics (LEFM) to earthquakes. These questions are investigated experimentally using a 40-cm-long experimental frictional interface. Three independent pistons apply a normal load with a fourth piston applying a shear load, enabling the application of a heterogeneous stress state and stress barriers. After loading the frictional interface to a near-critical state, subsequent unloading of one normal-load piston leads to dynamic ruptures which propagate into the heterogeneous stress fields. The ruptures in these experiments are found to be driven by unconventional singularities, characterized by an ever-increasing breakdown work with slip, and as a result do not conform to the assumptions of LEFM. As these experimental stress barriers inhibit slip, they therefore also reduce the breakdown work occurring outside of the cohesive zone. It is shown that this distal weakening, far from the crack tip, must be considered for the accurate prediction of rupture arrest length. These experiments are performed in the context of a proposed stimulation technique for Enhanced Geothermal Systems (EGSs). It has previously been suggested, through theoretical arguments, that stress barriers could be induced through the manipulation of pore pressure such that there is reduced seismic hazard during the shear stimulation of EGSs. This stimulation technique, known as preconditioning, is demonstrated here to reduce the mechanical energy flux to the crack tip, G, while also increasing the fracture energy, Gc. Preconditioning is shown to be capable of arresting seismic rupture and reducing co-seismic slip, slip velocity, and seismic moment at preconditioning stresses which are reasonably achievable in the field. Due to the fully-coupled nature of seismic rupture and fault slip, preconditioning also reduces distal weakening and its contribution to the propagation of induced seismic ruptures. In a similar vein, heterogeneous pore pressure fields associated with some seismic swarms can be used to explain changes in stress drop within the swarm without recourse to material or total-stress heterogeneity.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
应力屏障对非常规晶状体驱动的摩擦断裂的影响
能量耗散是否集中在断裂尖端附近,以及远离裂缝尖端的远端能量耗散是否对断裂动力学有重大影响,是描述摩擦断裂的关键问题,尤其是线性弹性断裂力学(LEFM)在地震中的应用。我们使用一个 40 厘米长的实验性摩擦界面对这些问题进行了实验研究。三个独立的活塞施加法向载荷,第四个活塞施加剪切载荷,从而实现了异质应力状态和应力屏障的应用。在将摩擦界面加载到接近临界状态后,一个正常加载活塞的后续卸载会导致动态断裂,并传播到异质应力场中。在这些实验中发现,断裂是由非常规奇异点驱动的,其特征是随着滑移不断增加的击穿功,因此不符合 LEFM 的假设。由于这些实验应力屏障会抑制滑移,因此也会减少内聚区外发生的击穿功。实验表明,要准确预测断裂停止长度,必须考虑这种远离裂纹尖端的远端削弱。这些实验是在拟议的强化地热系统(EGSs)激励技术背景下进行的。之前有人通过理论论证提出,可以通过操纵孔隙压力来诱导应力屏障,从而降低 EGSs 剪切激励过程中的地震危害。这种被称为 "预处理"(preconditioning)的激励技术在此被证明可以减少裂缝尖端的机械能通量(G),同时增加断裂能(Gc)。研究表明,在油田可合理达到的预处理应力条件下,预处理技术能够阻止地震破裂,减少共震滑移、滑移速度和地震力矩。由于地震破裂与断层滑移完全耦合,预处理还能减少远端削弱及其对诱发地震破裂传播的影响。同样,与某些地震震群相关的异质孔隙压力场也可用于解释震群内部应力降的变化,而无需求助于材料或总应力异质性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of The Mechanics and Physics of Solids
Journal of The Mechanics and Physics of Solids 物理-材料科学:综合
CiteScore
9.80
自引率
9.40%
发文量
276
审稿时长
52 days
期刊介绍: The aim of Journal of The Mechanics and Physics of Solids is to publish research of the highest quality and of lasting significance on the mechanics of solids. The scope is broad, from fundamental concepts in mechanics to the analysis of novel phenomena and applications. Solids are interpreted broadly to include both hard and soft materials as well as natural and synthetic structures. The approach can be theoretical, experimental or computational.This research activity sits within engineering science and the allied areas of applied mathematics, materials science, bio-mechanics, applied physics, and geophysics. The Journal was founded in 1952 by Rodney Hill, who was its Editor-in-Chief until 1968. The topics of interest to the Journal evolve with developments in the subject but its basic ethos remains the same: to publish research of the highest quality relating to the mechanics of solids. Thus, emphasis is placed on the development of fundamental concepts of mechanics and novel applications of these concepts based on theoretical, experimental or computational approaches, drawing upon the various branches of engineering science and the allied areas within applied mathematics, materials science, structural engineering, applied physics, and geophysics. The main purpose of the Journal is to foster scientific understanding of the processes of deformation and mechanical failure of all solid materials, both technological and natural, and the connections between these processes and their underlying physical mechanisms. In this sense, the content of the Journal should reflect the current state of the discipline in analysis, experimental observation, and numerical simulation. In the interest of achieving this goal, authors are encouraged to consider the significance of their contributions for the field of mechanics and the implications of their results, in addition to describing the details of their work.
期刊最新文献
Mechanical properties of modular assembled composite lattice architecture The positioning of stress fibers in contractile cells minimizes internal mechanical stress Strain localization in rate sensitive porous ductile materials Implicit implementation of a coupled transformation – plasticity crystal mechanics model for shape memory alloys that includes transformation rotations Latent-Energy-Based NNs: An interpretable Neural Network architecture for model-order reduction of nonlinear statics in solid mechanics
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1