Xiaoyun Cao , Wenhui Hao , Wanqi Pan , Xuelan Gao , Jingwen Xie , Lingjuan Du
{"title":"A vacuolar protein MaSCPL1 mediates anthocyanin acylation modifications in blue-flowered grape hyacinth","authors":"Xiaoyun Cao , Wenhui Hao , Wanqi Pan , Xuelan Gao , Jingwen Xie , Lingjuan Du","doi":"10.1016/j.plantsci.2024.112273","DOIUrl":null,"url":null,"abstract":"<div><div>The grape hyacinth is renowned for its profuse blue flowers, which confer substantial scientific and ornamental significance as well as considerable potential for industrial applications. The serine carboxypeptidase-like acyltransferases (SCPL-ATs) family is crucial for the blue flower coloration. To elucidate SCPL-ATs involved in anthocyanin modification in grape hyacinth, we performed a transcriptomic analysis of grape hyacinth SCPL-ATs. Through gene expression profiling, we identified a promising candidate gene, <em>MaSCPL1</em>, whose expression patterns corresponded with variations in anthocyanin content throughout petal coloration. Subsequently, the functional role of the <em>MaSCPL1</em> gene was validated using the native petal regeneration system, and the silencing of <em>MaSCPL1</em> led to a decreased total anthocyanin content and Dp3MG content in grape hyacinth petals. Furthermore, we employed yeast one-hybrid (Y1H), electrophoretic mobility shift assay (EMSA), and dual-luciferase assays to explore the regulatory interactions between the anthocyanin biosynthesis transcription factor MaMybA and the <em>MaSCPL1</em> promoter. Our findings indicate that MaMybA can bind to the <em>MaSCPL1</em> promoter and significantly activate its expression. Furthermore, the MaMybA-RNAi resulted in a substantial multifold reduction in the expression of <em>MaSCPL1</em>, implying that the regulation of <em>MaSCPL1</em> expression is mediated by MaMybA. This study revealed the <em>MaSCPL1</em> gene has been associated with anthocyanin acylated modification in grape hyacinth and elucidated the important role of the MaMybA-MaSCPL1 module in colouration grape hyacinth.</div></div>","PeriodicalId":20273,"journal":{"name":"Plant Science","volume":null,"pages":null},"PeriodicalIF":4.2000,"publicationDate":"2024-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plant Science","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0168945224003005","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
The grape hyacinth is renowned for its profuse blue flowers, which confer substantial scientific and ornamental significance as well as considerable potential for industrial applications. The serine carboxypeptidase-like acyltransferases (SCPL-ATs) family is crucial for the blue flower coloration. To elucidate SCPL-ATs involved in anthocyanin modification in grape hyacinth, we performed a transcriptomic analysis of grape hyacinth SCPL-ATs. Through gene expression profiling, we identified a promising candidate gene, MaSCPL1, whose expression patterns corresponded with variations in anthocyanin content throughout petal coloration. Subsequently, the functional role of the MaSCPL1 gene was validated using the native petal regeneration system, and the silencing of MaSCPL1 led to a decreased total anthocyanin content and Dp3MG content in grape hyacinth petals. Furthermore, we employed yeast one-hybrid (Y1H), electrophoretic mobility shift assay (EMSA), and dual-luciferase assays to explore the regulatory interactions between the anthocyanin biosynthesis transcription factor MaMybA and the MaSCPL1 promoter. Our findings indicate that MaMybA can bind to the MaSCPL1 promoter and significantly activate its expression. Furthermore, the MaMybA-RNAi resulted in a substantial multifold reduction in the expression of MaSCPL1, implying that the regulation of MaSCPL1 expression is mediated by MaMybA. This study revealed the MaSCPL1 gene has been associated with anthocyanin acylated modification in grape hyacinth and elucidated the important role of the MaMybA-MaSCPL1 module in colouration grape hyacinth.
期刊介绍:
Plant Science will publish in the minimum of time, research manuscripts as well as commissioned reviews and commentaries recommended by its referees in all areas of experimental plant biology with emphasis in the broad areas of genomics, proteomics, biochemistry (including enzymology), physiology, cell biology, development, genetics, functional plant breeding, systems biology and the interaction of plants with the environment.
Manuscripts for full consideration should be written concisely and essentially as a final report. The main criterion for publication is that the manuscript must contain original and significant insights that lead to a better understanding of fundamental plant biology. Papers centering on plant cell culture should be of interest to a wide audience and methods employed result in a substantial improvement over existing established techniques and approaches. Methods papers are welcome only when the technique(s) described is novel or provides a major advancement of established protocols.