Effect of Ti and Mo content changes on microstructure and properties of laser cladding FeCoCrNiMn high entropy alloy coatings

IF 4.3 2区 材料科学 Q2 CHEMISTRY, PHYSICAL Intermetallics Pub Date : 2024-09-26 DOI:10.1016/j.intermet.2024.108509
Lingchen Kong, Chuanwei Shi, Xuan Hao, Shenhao Wang, Yushuang Huo, Zhiheng Zhu, Junhua Sun
{"title":"Effect of Ti and Mo content changes on microstructure and properties of laser cladding FeCoCrNiMn high entropy alloy coatings","authors":"Lingchen Kong,&nbsp;Chuanwei Shi,&nbsp;Xuan Hao,&nbsp;Shenhao Wang,&nbsp;Yushuang Huo,&nbsp;Zhiheng Zhu,&nbsp;Junhua Sun","doi":"10.1016/j.intermet.2024.108509","DOIUrl":null,"url":null,"abstract":"<div><div>The HEA coatings of FeCoCrNiMnTixMo1.5-x(x = 0.25, 0.5, 0.75, 1 and 1.25) were prepared by laser cladding. X-ray diffraction (XRD), electron backscatter diffraction (EBSD), and scanning electron microscopy (SEM) were used to characterize the phase and crystal structure. The mechanical properties were tested. The results show that Ti is solidly dissolved in the FCC phase for solid solution strengthening. Mo is precipitated as the second phase σ phase for second phase dispersion strengthening. As x increases, the coating becomes the FCC+σ phase, and the σ phase disappears at x = 1.25. The microhardness and wear resistance of the coating are greatly improved by solution strengthening and second phase precipitation strengthening. The microhardness is up to 3.18 times of the substrate, and the wear resistance is up to 10.9 times of the substrate. Corrosion resistance of all coatings is better than that of 45# steel. With the increase of x, the corrosion resistance of the coating increases first and then decreases. When x = 1, the corrosion resistance of the coating is the best.</div></div>","PeriodicalId":331,"journal":{"name":"Intermetallics","volume":"175 ","pages":"Article 108509"},"PeriodicalIF":4.3000,"publicationDate":"2024-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Intermetallics","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0966979524003285","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

The HEA coatings of FeCoCrNiMnTixMo1.5-x(x = 0.25, 0.5, 0.75, 1 and 1.25) were prepared by laser cladding. X-ray diffraction (XRD), electron backscatter diffraction (EBSD), and scanning electron microscopy (SEM) were used to characterize the phase and crystal structure. The mechanical properties were tested. The results show that Ti is solidly dissolved in the FCC phase for solid solution strengthening. Mo is precipitated as the second phase σ phase for second phase dispersion strengthening. As x increases, the coating becomes the FCC+σ phase, and the σ phase disappears at x = 1.25. The microhardness and wear resistance of the coating are greatly improved by solution strengthening and second phase precipitation strengthening. The microhardness is up to 3.18 times of the substrate, and the wear resistance is up to 10.9 times of the substrate. Corrosion resistance of all coatings is better than that of 45# steel. With the increase of x, the corrosion resistance of the coating increases first and then decreases. When x = 1, the corrosion resistance of the coating is the best.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
钛和钼含量变化对激光熔覆铁钴铬镍锰高熵合金镀层微观结构和性能的影响
通过激光熔覆制备了铁钴铬镍锰铁合金 1.5-x(x = 0.25、0.5、0.75、1 和 1.25)的 HEA 涂层。利用 X 射线衍射 (XRD)、电子反向散射衍射 (EBSD) 和扫描电子显微镜 (SEM) 表征了相和晶体结构。同时还测试了其机械性能。结果表明,钛固溶在 FCC 相中,用于固溶强化。钼作为第二相σ相析出,用于第二相分散强化。随着 x 的增加,涂层变成了 FCC+σ 相,σ 相在 x = 1.25 时消失。通过溶液强化和第二相沉淀强化,涂层的显微硬度和耐磨性大大提高。涂层的显微硬度是基体的 3.18 倍,耐磨性是基体的 10.9 倍。所有涂层的耐腐蚀性均优于 45#钢。随着 x 的增大,涂层的耐腐蚀性先增大后减小。当 x = 1 时,涂层的耐腐蚀性最好。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Intermetallics
Intermetallics 工程技术-材料科学:综合
CiteScore
7.80
自引率
9.10%
发文量
291
审稿时长
37 days
期刊介绍: This journal is a platform for publishing innovative research and overviews for advancing our understanding of the structure, property, and functionality of complex metallic alloys, including intermetallics, metallic glasses, and high entropy alloys. The journal reports the science and engineering of metallic materials in the following aspects: Theories and experiments which address the relationship between property and structure in all length scales. Physical modeling and numerical simulations which provide a comprehensive understanding of experimental observations. Stimulated methodologies to characterize the structure and chemistry of materials that correlate the properties. Technological applications resulting from the understanding of property-structure relationship in materials. Novel and cutting-edge results warranting rapid communication. The journal also publishes special issues on selected topics and overviews by invitation only.
期刊最新文献
Investigation of tribological properties of heat-treated ZrNbTiVAl high entropy alloy in dry sliding conditions Microstructure evolution and tensile properties behavior during aging temperature of CoCrFeNi-based high entropy alloys Influence of ball milling on the evolution of microstructure and microtexture in hot-press sintered cobalt alloy Improving shape memory effect in Fe-Mn-Si-based alloys by reducing annealing twin boundaries through trace boron doping The diversity of evolution behavior between stoichiometric and non-stoichiometric AlTM intermetallics in Mg melt
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1