Adrian Schmitz, Semih Burak, Julian Miller, Matthias S. Müller
{"title":"Parallel Pattern Compiler for Automatic Global Optimizations","authors":"Adrian Schmitz, Semih Burak, Julian Miller, Matthias S. Müller","doi":"10.1016/j.parco.2024.103112","DOIUrl":null,"url":null,"abstract":"<div><div>High-performance computing (HPC) systems enable scientific advances through simulation and data processing. The heterogeneity in HPC hardware and software increases the application complexity and reduces its maintainability and productivity. This work proposes a prototype implementation for a parallel pattern-based source-to-source compiler to address these challenges. The prototype limits the complexity of parallelism and heterogeneous architectures to parallel patterns that are optimized towards a given target architecture. By applying high-level optimizations and a mapping between parallel patterns and execution units during compile time, portability between systems is achieved. The compiler can address architectures with shared memory, distributed memory, and accelerator offloading.</div><div>The approach shows speedups for seven of the nine supported Rodinia benchmarks, reaching speedups of up to twelve times. Porting LULESH to the Parallel Pattern Language (PPL) shows a compression of code size by 65% (3.4 thousand lines of code) through a more concise expression and a higher level of abstraction. The tool’s limitations include dynamic algorithms that are challenging to analyze statically and overheads during the compile time optimization. This paper is an extended version of a previous PMAM publication (Schmitz et al., 2024).</div></div>","PeriodicalId":54642,"journal":{"name":"Parallel Computing","volume":"122 ","pages":"Article 103112"},"PeriodicalIF":2.0000,"publicationDate":"2024-09-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Parallel Computing","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0167819124000504","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
引用次数: 0
Abstract
High-performance computing (HPC) systems enable scientific advances through simulation and data processing. The heterogeneity in HPC hardware and software increases the application complexity and reduces its maintainability and productivity. This work proposes a prototype implementation for a parallel pattern-based source-to-source compiler to address these challenges. The prototype limits the complexity of parallelism and heterogeneous architectures to parallel patterns that are optimized towards a given target architecture. By applying high-level optimizations and a mapping between parallel patterns and execution units during compile time, portability between systems is achieved. The compiler can address architectures with shared memory, distributed memory, and accelerator offloading.
The approach shows speedups for seven of the nine supported Rodinia benchmarks, reaching speedups of up to twelve times. Porting LULESH to the Parallel Pattern Language (PPL) shows a compression of code size by 65% (3.4 thousand lines of code) through a more concise expression and a higher level of abstraction. The tool’s limitations include dynamic algorithms that are challenging to analyze statically and overheads during the compile time optimization. This paper is an extended version of a previous PMAM publication (Schmitz et al., 2024).
期刊介绍:
Parallel Computing is an international journal presenting the practical use of parallel computer systems, including high performance architecture, system software, programming systems and tools, and applications. Within this context the journal covers all aspects of high-end parallel computing from single homogeneous or heterogenous computing nodes to large-scale multi-node systems.
Parallel Computing features original research work and review articles as well as novel or illustrative accounts of application experience with (and techniques for) the use of parallel computers. We also welcome studies reproducing prior publications that either confirm or disprove prior published results.
Particular technical areas of interest include, but are not limited to:
-System software for parallel computer systems including programming languages (new languages as well as compilation techniques), operating systems (including middleware), and resource management (scheduling and load-balancing).
-Enabling software including debuggers, performance tools, and system and numeric libraries.
-General hardware (architecture) concepts, new technologies enabling the realization of such new concepts, and details of commercially available systems
-Software engineering and productivity as it relates to parallel computing
-Applications (including scientific computing, deep learning, machine learning) or tool case studies demonstrating novel ways to achieve parallelism
-Performance measurement results on state-of-the-art systems
-Approaches to effectively utilize large-scale parallel computing including new algorithms or algorithm analysis with demonstrated relevance to real applications using existing or next generation parallel computer architectures.
-Parallel I/O systems both hardware and software
-Networking technology for support of high-speed computing demonstrating the impact of high-speed computation on parallel applications