{"title":"TDAD: Self-supervised industrial anomaly detection with a two-stage diffusion model","authors":"Changyun Wei , Hui Han , Yu Xia , Ze Ji","doi":"10.1016/j.compind.2024.104192","DOIUrl":null,"url":null,"abstract":"<div><div>Visual anomaly detection has emerged as a highly applicable solution in practical industrial manufacturing, owing to its notable effectiveness and efficiency. However, it also presents several challenges and uncertainties. To address the complexity of anomaly types and the high cost associated with data annotation, this paper introduces a self-supervised learning framework called TDAD, based on a two-stage diffusion model. TDAD consists of three key components: anomaly synthesis, image reconstruction, and defect segmentation. It is trained end-to-end, with the goal of improving pixel-level segmentation accuracy of anomalies and reducing false detection rates. By synthesizing anomalies from normal samples, designing a diffusion model-based reconstruction network, and incorporating a multiscale semantic feature fusion module for defect segmentation, TDAD achieves state-of-the-art performance in image-level detection and anomaly localization on challenging and widely used datasets such as MVTec and VisA benchmarks.</div></div>","PeriodicalId":55219,"journal":{"name":"Computers in Industry","volume":"164 ","pages":"Article 104192"},"PeriodicalIF":8.2000,"publicationDate":"2024-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computers in Industry","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0166361524001209","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0
Abstract
Visual anomaly detection has emerged as a highly applicable solution in practical industrial manufacturing, owing to its notable effectiveness and efficiency. However, it also presents several challenges and uncertainties. To address the complexity of anomaly types and the high cost associated with data annotation, this paper introduces a self-supervised learning framework called TDAD, based on a two-stage diffusion model. TDAD consists of three key components: anomaly synthesis, image reconstruction, and defect segmentation. It is trained end-to-end, with the goal of improving pixel-level segmentation accuracy of anomalies and reducing false detection rates. By synthesizing anomalies from normal samples, designing a diffusion model-based reconstruction network, and incorporating a multiscale semantic feature fusion module for defect segmentation, TDAD achieves state-of-the-art performance in image-level detection and anomaly localization on challenging and widely used datasets such as MVTec and VisA benchmarks.
期刊介绍:
The objective of Computers in Industry is to present original, high-quality, application-oriented research papers that:
• Illuminate emerging trends and possibilities in the utilization of Information and Communication Technology in industry;
• Establish connections or integrations across various technology domains within the expansive realm of computer applications for industry;
• Foster connections or integrations across diverse application areas of ICT in industry.