Pierre Murchan , Pilib Ó Broin , Anne-Marie Baird , Orla Sheils , Stephen P Finn
{"title":"Deep feature batch correction using ComBat for machine learning applications in computational pathology","authors":"Pierre Murchan , Pilib Ó Broin , Anne-Marie Baird , Orla Sheils , Stephen P Finn","doi":"10.1016/j.jpi.2024.100396","DOIUrl":null,"url":null,"abstract":"<div><h3>Background</h3><div>Developing artificial intelligence (AI) models for digital pathology requires large datasets from multiple sources. However, without careful implementation, AI models risk learning confounding site-specific features in datasets instead of clinically relevant information, leading to overestimated performance, poor generalizability to real-world data, and potential misdiagnosis.</div></div><div><h3>Methods</h3><div>Whole-slide images (WSIs) from The Cancer Genome Atlas (TCGA) colon (COAD), and stomach adenocarcinoma datasets were selected for inclusion in this study. Patch embeddings were obtained using three feature extraction models, followed by ComBat harmonization. Attention-based multiple instance learning models were trained to predict tissue-source site (TSS), as well as clinical and genetic attributes, using raw, Macenko normalized, and Combat-harmonized patch embeddings.</div></div><div><h3>Results</h3><div>TSS prediction achieved high accuracy (AUROC > 0.95) with all three feature extraction models. ComBat harmonization significantly reduced the AUROC for TSS prediction, with mean AUROCs dropping to approximately 0.5 for most models, indicating successful mitigation of batch effects (e.g., CCL-ResNet50 in TCGA-COAD: Pre-ComBat AUROC = 0.960, Post-ComBat AUROC = 0.506, <em>p <</em> 0.001). Clinical attributes associated with TSS, such as race and treatment response, showed decreased predictability post-harmonization. Notably, the prediction of genetic features like MSI status remained robust after harmonization (e.g., MSI in TCGA-COAD: Pre-ComBat AUROC = 0.667, Post-ComBat AUROC = 0.669, <em>p</em>=0.952), indicating the preservation of true histological signals.</div></div><div><h3>Conclusion</h3><div>ComBat harmonization of deep learning-derived histology features effectively reduces the risk of AI models learning confounding features in WSIs, ensuring more reliable performance estimates. This approach is promising for the integration of large-scale digital pathology datasets.</div></div>","PeriodicalId":37769,"journal":{"name":"Journal of Pathology Informatics","volume":"15 ","pages":"Article 100396"},"PeriodicalIF":0.0000,"publicationDate":"2024-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Pathology Informatics","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S215335392400035X","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Medicine","Score":null,"Total":0}
引用次数: 0
Abstract
Background
Developing artificial intelligence (AI) models for digital pathology requires large datasets from multiple sources. However, without careful implementation, AI models risk learning confounding site-specific features in datasets instead of clinically relevant information, leading to overestimated performance, poor generalizability to real-world data, and potential misdiagnosis.
Methods
Whole-slide images (WSIs) from The Cancer Genome Atlas (TCGA) colon (COAD), and stomach adenocarcinoma datasets were selected for inclusion in this study. Patch embeddings were obtained using three feature extraction models, followed by ComBat harmonization. Attention-based multiple instance learning models were trained to predict tissue-source site (TSS), as well as clinical and genetic attributes, using raw, Macenko normalized, and Combat-harmonized patch embeddings.
Results
TSS prediction achieved high accuracy (AUROC > 0.95) with all three feature extraction models. ComBat harmonization significantly reduced the AUROC for TSS prediction, with mean AUROCs dropping to approximately 0.5 for most models, indicating successful mitigation of batch effects (e.g., CCL-ResNet50 in TCGA-COAD: Pre-ComBat AUROC = 0.960, Post-ComBat AUROC = 0.506, p < 0.001). Clinical attributes associated with TSS, such as race and treatment response, showed decreased predictability post-harmonization. Notably, the prediction of genetic features like MSI status remained robust after harmonization (e.g., MSI in TCGA-COAD: Pre-ComBat AUROC = 0.667, Post-ComBat AUROC = 0.669, p=0.952), indicating the preservation of true histological signals.
Conclusion
ComBat harmonization of deep learning-derived histology features effectively reduces the risk of AI models learning confounding features in WSIs, ensuring more reliable performance estimates. This approach is promising for the integration of large-scale digital pathology datasets.
期刊介绍:
The Journal of Pathology Informatics (JPI) is an open access peer-reviewed journal dedicated to the advancement of pathology informatics. This is the official journal of the Association for Pathology Informatics (API). The journal aims to publish broadly about pathology informatics and freely disseminate all articles worldwide. This journal is of interest to pathologists, informaticians, academics, researchers, health IT specialists, information officers, IT staff, vendors, and anyone with an interest in informatics. We encourage submissions from anyone with an interest in the field of pathology informatics. We publish all types of papers related to pathology informatics including original research articles, technical notes, reviews, viewpoints, commentaries, editorials, symposia, meeting abstracts, book reviews, and correspondence to the editors. All submissions are subject to rigorous peer review by the well-regarded editorial board and by expert referees in appropriate specialties.