Synergistically magnetic and dielectric properties of two dimensional Fe3Al@PPy lamellae exhibiting broadband and strong electromagnetic wave absorption
Xixi Luo , Tao Liu , Changze Wei , Di Lan , Xin Li , Ying Ma , Hui Xie , Fangli Yu , Guanglei Wu
{"title":"Synergistically magnetic and dielectric properties of two dimensional Fe3Al@PPy lamellae exhibiting broadband and strong electromagnetic wave absorption","authors":"Xixi Luo , Tao Liu , Changze Wei , Di Lan , Xin Li , Ying Ma , Hui Xie , Fangli Yu , Guanglei Wu","doi":"10.1016/j.susmat.2024.e01127","DOIUrl":null,"url":null,"abstract":"<div><div>Addressing the issue of low impedance characteristics is essential to improve the electromagnetic wave absorption performance of magnetic materials. Herein, two dimensional Fe<sub>3</sub>Al@polypyrrole (PPy) lamellae with synergistic magnetic and dielectric properties are fabricated by a mechanical alloying, ordering transformation and polymerization process, which exhibits excellent electromagnetic wave absorption performance. By carefully controlling the thickness of the PPy shell, the optimized Fe<sub>3</sub>Al@PPy lamellae show a minimum reflection loss of −45.6 dB and an effective absorption bandwidth of 9.1 GHz at a thickness of only 1.5 mm. The conformal growth of Fe<sub>3</sub>Al@PPy lamellae can induce strong interfacial polarization, dipole polarization, multiple scattering effect and magnetic loss behaviors for the attenuation of electromagnetic waves. This study demonstrates a facile strategy for the development of efficient Fe<sub>3</sub>Al@PPy composite absorbents showing great potential for practical applications.</div></div>","PeriodicalId":22097,"journal":{"name":"Sustainable Materials and Technologies","volume":"42 ","pages":"Article e01127"},"PeriodicalIF":8.6000,"publicationDate":"2024-09-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sustainable Materials and Technologies","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2214993724003075","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0
Abstract
Addressing the issue of low impedance characteristics is essential to improve the electromagnetic wave absorption performance of magnetic materials. Herein, two dimensional Fe3Al@polypyrrole (PPy) lamellae with synergistic magnetic and dielectric properties are fabricated by a mechanical alloying, ordering transformation and polymerization process, which exhibits excellent electromagnetic wave absorption performance. By carefully controlling the thickness of the PPy shell, the optimized Fe3Al@PPy lamellae show a minimum reflection loss of −45.6 dB and an effective absorption bandwidth of 9.1 GHz at a thickness of only 1.5 mm. The conformal growth of Fe3Al@PPy lamellae can induce strong interfacial polarization, dipole polarization, multiple scattering effect and magnetic loss behaviors for the attenuation of electromagnetic waves. This study demonstrates a facile strategy for the development of efficient Fe3Al@PPy composite absorbents showing great potential for practical applications.
期刊介绍:
Sustainable Materials and Technologies (SM&T), an international, cross-disciplinary, fully open access journal published by Elsevier, focuses on original full-length research articles and reviews. It covers applied or fundamental science of nano-, micro-, meso-, and macro-scale aspects of materials and technologies for sustainable development. SM&T gives special attention to contributions that bridge the knowledge gap between materials and system designs.