{"title":"One century of carbon dynamics in the eastern Canadian boreal forest under various management strategies and climate change projections","authors":"Abderrahmane Ameray , Xavier Cavard , Dominic Cyr , Osvaldo Valeria , Miguel Montoro Girona , Yves Bergeron","doi":"10.1016/j.ecolmodel.2024.110894","DOIUrl":null,"url":null,"abstract":"<div><div>Partial cutting has lower canopy removal intensities than clearcutting and has been proposed as an alternative harvesting approach to enhance ecosystem services, including carbon sequestration and storage. However, the ideal partial cutting/clearcutting proportion that should be applied to managed areas of the eastern Canadian boreal forest to enhance long-term carbon sequestration and storage at the landscape scale remains uncertain. Our study projected carbon dynamics over 100 years (2010–2110) under a portfolio of management strategies and future climate scenarios within three boreal forest management units in Quebec, Canada, distributed along an east–west gradient. To model future carbon dynamics, we used LANDIS-II, its Forest Carbon Succession extension, and several extensions that account for natural disturbances in the boreal forest (wind, fire, spruce budworm). We simulated the effects of several management strategies on carbon dynamics, including a business-as-usual strategy (clearcutting applied to more than 95 % of the annually managed area), and compared these projections against a no-harvest natural dynamics scenario. We projected an overall increase in total ecosystem carbon storage, mostly because of increased productivity and broadleaf presence under limited climate change. The drier Western region under climate scenario RCP8.5 was an exception, as stocks decreased after 2090 because of the direct negative effects of extreme climate change on coniferous species’ productivity. Under the natural dynamic scenario, our simulations suggest that the Quebec Forest in the Central and Western regions may act as a carbon sink, despite high fire-related carbon emissions, particularly under RCP4.5 and RCP8.5 Conversely, the eastern region periodically switched from carbon sink to source following SBW outbreaks, thus being a weak sink over the simulation period. Applying partial cutting to over 50 % of the managed forest area effectively mitigated the negative impacts of climate change on carbon balance, reducing differences in stand composition and carbon storage between naturally dynamic forests and those managed for timber. In contrast, clearcutting-based scenarios, including the business-as-usual approach, substantially reduced total ecosystem carbon storage— by approximately double (10 tC ha<sup>−1</sup> yr<sup>−1</sup>) compared to partial cutting scenarios (<5 tC ha<sup>−1</sup> yr<sup>−1</sup>). Clearcutting led to higher heterotrophic respiration due to the proliferation of fast-decomposing broadleaves, resulting in lower carbon accumulation compared to partial cuts. Our findings underscore the importance of balancing canopy removal intensities to increase carbon sequestration and storage while preserving other ecosystem qualities under climate change.</div></div>","PeriodicalId":51043,"journal":{"name":"Ecological Modelling","volume":"498 ","pages":"Article 110894"},"PeriodicalIF":2.6000,"publicationDate":"2024-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ecological Modelling","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0304380024002825","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ECOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Partial cutting has lower canopy removal intensities than clearcutting and has been proposed as an alternative harvesting approach to enhance ecosystem services, including carbon sequestration and storage. However, the ideal partial cutting/clearcutting proportion that should be applied to managed areas of the eastern Canadian boreal forest to enhance long-term carbon sequestration and storage at the landscape scale remains uncertain. Our study projected carbon dynamics over 100 years (2010–2110) under a portfolio of management strategies and future climate scenarios within three boreal forest management units in Quebec, Canada, distributed along an east–west gradient. To model future carbon dynamics, we used LANDIS-II, its Forest Carbon Succession extension, and several extensions that account for natural disturbances in the boreal forest (wind, fire, spruce budworm). We simulated the effects of several management strategies on carbon dynamics, including a business-as-usual strategy (clearcutting applied to more than 95 % of the annually managed area), and compared these projections against a no-harvest natural dynamics scenario. We projected an overall increase in total ecosystem carbon storage, mostly because of increased productivity and broadleaf presence under limited climate change. The drier Western region under climate scenario RCP8.5 was an exception, as stocks decreased after 2090 because of the direct negative effects of extreme climate change on coniferous species’ productivity. Under the natural dynamic scenario, our simulations suggest that the Quebec Forest in the Central and Western regions may act as a carbon sink, despite high fire-related carbon emissions, particularly under RCP4.5 and RCP8.5 Conversely, the eastern region periodically switched from carbon sink to source following SBW outbreaks, thus being a weak sink over the simulation period. Applying partial cutting to over 50 % of the managed forest area effectively mitigated the negative impacts of climate change on carbon balance, reducing differences in stand composition and carbon storage between naturally dynamic forests and those managed for timber. In contrast, clearcutting-based scenarios, including the business-as-usual approach, substantially reduced total ecosystem carbon storage— by approximately double (10 tC ha−1 yr−1) compared to partial cutting scenarios (<5 tC ha−1 yr−1). Clearcutting led to higher heterotrophic respiration due to the proliferation of fast-decomposing broadleaves, resulting in lower carbon accumulation compared to partial cuts. Our findings underscore the importance of balancing canopy removal intensities to increase carbon sequestration and storage while preserving other ecosystem qualities under climate change.
期刊介绍:
The journal is concerned with the use of mathematical models and systems analysis for the description of ecological processes and for the sustainable management of resources. Human activity and well-being are dependent on and integrated with the functioning of ecosystems and the services they provide. We aim to understand these basic ecosystem functions using mathematical and conceptual modelling, systems analysis, thermodynamics, computer simulations, and ecological theory. This leads to a preference for process-based models embedded in theory with explicit causative agents as opposed to strictly statistical or correlative descriptions. These modelling methods can be applied to a wide spectrum of issues ranging from basic ecology to human ecology to socio-ecological systems. The journal welcomes research articles, short communications, review articles, letters to the editor, book reviews, and other communications. The journal also supports the activities of the [International Society of Ecological Modelling (ISEM)](http://www.isemna.org/).