Yuqian He, Lu Zhang, Hang Yang, Hongqi Zhang, Xianbin Yu
{"title":"Impacts of sampling on the artificial noise-assisted terahertz secure communication systems","authors":"Yuqian He, Lu Zhang, Hang Yang, Hongqi Zhang, Xianbin Yu","doi":"10.1016/j.phycom.2024.102507","DOIUrl":null,"url":null,"abstract":"<div><div>In this paper, we investigate an artificial noise (AN)-assisted terahertz (THz) secure communication system. Different from previous studies, we consider a non-ideal analog-to-digital converter (ADC) in the AN-THz system. Specifically, both synchronization noise and quantization noise in ADC are investigated. The normalized distortion matric is employed to calculate synchronization noise power and the <em>Bellman</em>’s theory is introduced for quantization noise power. Under the constrain of limited ADC power, the secrecy performance presents a ‘U-shaped’ curve versus the sampling rate and therefore the optimal sampling rate is derived. Moreover, we validate our theoretical model in the experiment, and our experimental results in 102 GHz show the synchronization noise power varies with the square of timing error, and the quantization noise power is affected by the total data length, which agree well with the model predictions.</div></div>","PeriodicalId":48707,"journal":{"name":"Physical Communication","volume":"67 ","pages":"Article 102507"},"PeriodicalIF":2.0000,"publicationDate":"2024-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical Communication","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1874490724002258","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
In this paper, we investigate an artificial noise (AN)-assisted terahertz (THz) secure communication system. Different from previous studies, we consider a non-ideal analog-to-digital converter (ADC) in the AN-THz system. Specifically, both synchronization noise and quantization noise in ADC are investigated. The normalized distortion matric is employed to calculate synchronization noise power and the Bellman’s theory is introduced for quantization noise power. Under the constrain of limited ADC power, the secrecy performance presents a ‘U-shaped’ curve versus the sampling rate and therefore the optimal sampling rate is derived. Moreover, we validate our theoretical model in the experiment, and our experimental results in 102 GHz show the synchronization noise power varies with the square of timing error, and the quantization noise power is affected by the total data length, which agree well with the model predictions.
期刊介绍:
PHYCOM: Physical Communication is an international and archival journal providing complete coverage of all topics of interest to those involved in all aspects of physical layer communications. Theoretical research contributions presenting new techniques, concepts or analyses, applied contributions reporting on experiences and experiments, and tutorials are published.
Topics of interest include but are not limited to:
Physical layer issues of Wireless Local Area Networks, WiMAX, Wireless Mesh Networks, Sensor and Ad Hoc Networks, PCS Systems; Radio access protocols and algorithms for the physical layer; Spread Spectrum Communications; Channel Modeling; Detection and Estimation; Modulation and Coding; Multiplexing and Carrier Techniques; Broadband Wireless Communications; Wireless Personal Communications; Multi-user Detection; Signal Separation and Interference rejection: Multimedia Communications over Wireless; DSP Applications to Wireless Systems; Experimental and Prototype Results; Multiple Access Techniques; Space-time Processing; Synchronization Techniques; Error Control Techniques; Cryptography; Software Radios; Tracking; Resource Allocation and Inference Management; Multi-rate and Multi-carrier Communications; Cross layer Design and Optimization; Propagation and Channel Characterization; OFDM Systems; MIMO Systems; Ultra-Wideband Communications; Cognitive Radio System Architectures; Platforms and Hardware Implementations for the Support of Cognitive, Radio Systems; Cognitive Radio Resource Management and Dynamic Spectrum Sharing.