{"title":"GCBICT: Green Coffee Bean Identification Command-line Tool","authors":"Shu-Min Tan , Shih-Hsun Hung , Je-Chiang Tsai","doi":"10.1016/j.softx.2024.101843","DOIUrl":null,"url":null,"abstract":"<div><div>Coffee is one of the most important agricultural commodities in commodity markets. The quality of coffee beverages strongly depends on that of green coffee beans. However, the conventional selection technique mainly relies on personnel visual inspection, which is subjective and time-consuming. Based on our recently discovered site-specific color characteristics of the seat coat of green coffee beans and support vector machines (a machine learning classifier), the Python-based identification/evaluation scheme of beans, GCBICT, provides an affordable, effective, and user-friendly way to identify qualified beans and their growing sites.</div><div>The command-line tool consists of two functions: (1) the Qualified-Defective Separator and (2) the Mixed Separator. The Qualified-Defective Separator function is to distinguish between qualified and defective green coffee beans. Due to the site-specific property of our color characteristics of beans, the training set can be small. The Mixed Separator can identify qualified beans from different growing sites if coffee distributors mix them for cost in their business. Moreover, this function is unique to our evaluation scheme.</div></div>","PeriodicalId":21905,"journal":{"name":"SoftwareX","volume":"28 ","pages":"Article 101843"},"PeriodicalIF":2.4000,"publicationDate":"2024-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"SoftwareX","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2352711024002140","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, SOFTWARE ENGINEERING","Score":null,"Total":0}
引用次数: 0
Abstract
Coffee is one of the most important agricultural commodities in commodity markets. The quality of coffee beverages strongly depends on that of green coffee beans. However, the conventional selection technique mainly relies on personnel visual inspection, which is subjective and time-consuming. Based on our recently discovered site-specific color characteristics of the seat coat of green coffee beans and support vector machines (a machine learning classifier), the Python-based identification/evaluation scheme of beans, GCBICT, provides an affordable, effective, and user-friendly way to identify qualified beans and their growing sites.
The command-line tool consists of two functions: (1) the Qualified-Defective Separator and (2) the Mixed Separator. The Qualified-Defective Separator function is to distinguish between qualified and defective green coffee beans. Due to the site-specific property of our color characteristics of beans, the training set can be small. The Mixed Separator can identify qualified beans from different growing sites if coffee distributors mix them for cost in their business. Moreover, this function is unique to our evaluation scheme.
期刊介绍:
SoftwareX aims to acknowledge the impact of software on today''s research practice, and on new scientific discoveries in almost all research domains. SoftwareX also aims to stress the importance of the software developers who are, in part, responsible for this impact. To this end, SoftwareX aims to support publication of research software in such a way that: The software is given a stamp of scientific relevance, and provided with a peer-reviewed recognition of scientific impact; The software developers are given the credits they deserve; The software is citable, allowing traditional metrics of scientific excellence to apply; The academic career paths of software developers are supported rather than hindered; The software is publicly available for inspection, validation, and re-use. Above all, SoftwareX aims to inform researchers about software applications, tools and libraries with a (proven) potential to impact the process of scientific discovery in various domains. The journal is multidisciplinary and accepts submissions from within and across subject domains such as those represented within the broad thematic areas below: Mathematical and Physical Sciences; Environmental Sciences; Medical and Biological Sciences; Humanities, Arts and Social Sciences. Originating from these broad thematic areas, the journal also welcomes submissions of software that works in cross cutting thematic areas, such as citizen science, cybersecurity, digital economy, energy, global resource stewardship, health and wellbeing, etcetera. SoftwareX specifically aims to accept submissions representing domain-independent software that may impact more than one research domain.