Muhammad Naveed Abbas Hussain , Iqra Batool , Khadijah Mohammedsaleh Katubi , M.S. Al-Buriahi , Muhammad Imran , Ibrahim A. Alsafari , M. Naziruddin Khan , Alizah Jabeen
{"title":"Application of Ce2(WO4)3–ZnO–CuO nanocomposite as active photocatalyst for removal of ciprofloxacin from wastewater","authors":"Muhammad Naveed Abbas Hussain , Iqra Batool , Khadijah Mohammedsaleh Katubi , M.S. Al-Buriahi , Muhammad Imran , Ibrahim A. Alsafari , M. Naziruddin Khan , Alizah Jabeen","doi":"10.1016/j.jics.2024.101380","DOIUrl":null,"url":null,"abstract":"<div><div>In this study, the synthesis of Ce<sub>2</sub>(WO<sub>4</sub>)<sub>3</sub>/ZnO/CuO nanocomposite (NCs) was carried out using Co-precipitation method. The structural, morphological and spectral confirmation was achieved through X-ray diffraction (XRD), Scanning electron microscopy (SEM), Differential reflectance spectroscopy (DRS) and Fourier transform infrared spectroscopy (FTIR) analysis. The degradation efficiency for photocatalytic degradation of Ciprofloxacin (CF) and band gap value of prepared Ce<sub>2</sub>(WO<sub>4</sub>)<sub>3</sub>/ZnO/CuO nanocomposite was determined by using UV–Visible and DRS analysis. Band gap value for Ce<sub>2</sub>(WO<sub>4</sub>)<sub>3</sub>/ZnO/CuO was found to be 1.39 eV. Effects of different parameters such as contact time, pH, and effect of concentration of catalyst were investigated to optimize degradation conditions. This prepared nanocomposite was used for the degradation of CF and about 91 % degradation efficiency of CF has been achieved at pH 5 within 70 min by irradiation under sunlight and 60 mg concentration of photocatalyst. The EDTA and IPA scavenged photo-generated holes and hydroxyl ions respectively, the decrease in photocatalytic degradation indicates that holes and hydroxyl ions are reactive species in photocatalytic degradation of CF. The value of R<sup>2</sup> = 0.99 confirms the validity of Pseudo first order and Langmuir-Hinshelwood kinetic model for the degradation of CF. These results showed a novel method for the preparation of nanocomposite and the efficient degradation of antibiotics and can be applied to industrial manufacture.</div></div>","PeriodicalId":17276,"journal":{"name":"Journal of the Indian Chemical Society","volume":"101 11","pages":"Article 101380"},"PeriodicalIF":3.2000,"publicationDate":"2024-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the Indian Chemical Society","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0019452224002607","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
In this study, the synthesis of Ce2(WO4)3/ZnO/CuO nanocomposite (NCs) was carried out using Co-precipitation method. The structural, morphological and spectral confirmation was achieved through X-ray diffraction (XRD), Scanning electron microscopy (SEM), Differential reflectance spectroscopy (DRS) and Fourier transform infrared spectroscopy (FTIR) analysis. The degradation efficiency for photocatalytic degradation of Ciprofloxacin (CF) and band gap value of prepared Ce2(WO4)3/ZnO/CuO nanocomposite was determined by using UV–Visible and DRS analysis. Band gap value for Ce2(WO4)3/ZnO/CuO was found to be 1.39 eV. Effects of different parameters such as contact time, pH, and effect of concentration of catalyst were investigated to optimize degradation conditions. This prepared nanocomposite was used for the degradation of CF and about 91 % degradation efficiency of CF has been achieved at pH 5 within 70 min by irradiation under sunlight and 60 mg concentration of photocatalyst. The EDTA and IPA scavenged photo-generated holes and hydroxyl ions respectively, the decrease in photocatalytic degradation indicates that holes and hydroxyl ions are reactive species in photocatalytic degradation of CF. The value of R2 = 0.99 confirms the validity of Pseudo first order and Langmuir-Hinshelwood kinetic model for the degradation of CF. These results showed a novel method for the preparation of nanocomposite and the efficient degradation of antibiotics and can be applied to industrial manufacture.
期刊介绍:
The Journal of the Indian Chemical Society publishes original, fundamental, theorical, experimental research work of highest quality in all areas of chemistry, biochemistry, medicinal chemistry, electrochemistry, agrochemistry, chemical engineering and technology, food chemistry, environmental chemistry, etc.