Sparse recovery using expanders via hard thresholding algorithm

IF 3.4 2区 工程技术 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC Signal Processing Pub Date : 2024-09-24 DOI:10.1016/j.sigpro.2024.109715
Kun-Kai Wen, Jia-Xin He, Peng Li
{"title":"Sparse recovery using expanders via hard thresholding algorithm","authors":"Kun-Kai Wen,&nbsp;Jia-Xin He,&nbsp;Peng Li","doi":"10.1016/j.sigpro.2024.109715","DOIUrl":null,"url":null,"abstract":"<div><div>Expanders play an important role in combinatorial compressed sensing. Via expanders measurements, we propose the expander normalized heavy ball hard thresholding algorithm (ENHB-HT) based on expander iterative hard thresholding (E-IHT) algorithm. We provide convergence analysis of ENHB-HT, and it turns out that ENHB-HT can recover an <span><math><mi>s</mi></math></span>-sparse signal if the measurement matrix <span><math><mrow><mi>A</mi><mo>∈</mo><msup><mrow><mrow><mo>{</mo><mn>0</mn><mo>,</mo><mn>1</mn><mo>}</mo></mrow></mrow><mrow><mi>m</mi><mo>×</mo><mi>n</mi></mrow></msup></mrow></math></span> satisfies some mild conditions. Numerical experiments are simulated to support our two main theorems which describe the convergence rate and the accuracy of the proposed algorithm. Simulations are also performed to compare the performance of ENHB-HT and several existing algorithms under different types of noise, the empirical results demonstrate that our algorithm outperform a few existing ones in the presence of outliers.</div></div>","PeriodicalId":49523,"journal":{"name":"Signal Processing","volume":"227 ","pages":"Article 109715"},"PeriodicalIF":3.4000,"publicationDate":"2024-09-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Signal Processing","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0165168424003359","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

Expanders play an important role in combinatorial compressed sensing. Via expanders measurements, we propose the expander normalized heavy ball hard thresholding algorithm (ENHB-HT) based on expander iterative hard thresholding (E-IHT) algorithm. We provide convergence analysis of ENHB-HT, and it turns out that ENHB-HT can recover an s-sparse signal if the measurement matrix A{0,1}m×n satisfies some mild conditions. Numerical experiments are simulated to support our two main theorems which describe the convergence rate and the accuracy of the proposed algorithm. Simulations are also performed to compare the performance of ENHB-HT and several existing algorithms under different types of noise, the empirical results demonstrate that our algorithm outperform a few existing ones in the presence of outliers.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
通过硬阈值算法使用扩展器进行稀疏恢复
扩展器在组合压缩传感中发挥着重要作用。通过扩展器测量,我们在扩展器迭代硬阈值算法(E-IHT)的基础上提出了扩展器归一化重球硬阈值算法(ENHB-HT)。我们提供了 ENHB-HT 的收敛性分析,结果表明,如果测量矩阵 A∈{0,1}m×n 满足一些温和条件,ENHB-HT 可以恢复 s 稀疏信号。我们模拟了数值实验来支持我们的两个主要定理,这两个定理描述了所提算法的收敛速度和准确性。模拟实验还比较了 ENHB-HT 和几种现有算法在不同类型噪声下的性能,实证结果表明,在存在异常值的情况下,我们的算法优于几种现有算法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Signal Processing
Signal Processing 工程技术-工程:电子与电气
CiteScore
9.20
自引率
9.10%
发文量
309
审稿时长
41 days
期刊介绍: Signal Processing incorporates all aspects of the theory and practice of signal processing. It features original research work, tutorial and review articles, and accounts of practical developments. It is intended for a rapid dissemination of knowledge and experience to engineers and scientists working in the research, development or practical application of signal processing. Subject areas covered by the journal include: Signal Theory; Stochastic Processes; Detection and Estimation; Spectral Analysis; Filtering; Signal Processing Systems; Software Developments; Image Processing; Pattern Recognition; Optical Signal Processing; Digital Signal Processing; Multi-dimensional Signal Processing; Communication Signal Processing; Biomedical Signal Processing; Geophysical and Astrophysical Signal Processing; Earth Resources Signal Processing; Acoustic and Vibration Signal Processing; Data Processing; Remote Sensing; Signal Processing Technology; Radar Signal Processing; Sonar Signal Processing; Industrial Applications; New Applications.
期刊最新文献
Distributed filtering with time-varying topology: A temporal-difference learning approach in dual games Editorial Board MABDT: Multi-scale attention boosted deformable transformer for remote sensing image dehazing A new method for judging thermal image quality with applications Learning feature-weighted regularization discriminative correlation filters for real-time UAV tracking
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1