{"title":"Reconstruction of temperature field in different fire stages of electrical and mechanical equipment room based on acoustic CT","authors":"Hengjie Qin , Lingling Chai , Haowei Yao , Zhen Lou , Jiangqi Wen","doi":"10.1016/j.jlp.2024.105441","DOIUrl":null,"url":null,"abstract":"<div><div>Acquiring and visualizing temperature data in real time in the event of a fire in an electrical and mechanical equipment room is of great significance. It can be applied to early fire detection and monitoring, help rescuers quickly understand the fire situation, develop effective fire extinguishing and evacuation plans, and provide valuable data support for subsequent accident investigation. Acoustic computed tomography (CT) temperature measurement technology has the benefits of high precision, non-contact, real-time and global, in order to explore the applicability of this technology in the acquisition of details about temperature in the fire scene of electrical and mechanical equipment room, this paper carries out the following research. A numerical model of the fire in the electrical and mechanical equipment room is constructed on the basis of fire dynamics simulator (FDS), and the basic temperature data is obtained. The large ill-conditioned matrix equation of acoustic flight is constructed under a variety of mesh division schemes, and the Simultaneous Algebraic Reconstruction Technique (SART) is used to figure it out. Then we accomplish the temperature field reconstruction of the electrical and mechanical equipment room in different fire stages. The effect of reconstruction is evaluated through the analysis of the difference between the original and rebuilt data. The conclusions demonstrate that the acoustic CT temperature measurement technique can achieve reconstructing the temperature field in real time and with accuracy under the appropriate reconstruction scheme. With the rise in the quantity of grid divisions, the morphology of the reconstructed high-temperature region of the fire field is more similar to the morphology of the basic fire field within a certain range.</div></div>","PeriodicalId":16291,"journal":{"name":"Journal of Loss Prevention in The Process Industries","volume":"92 ","pages":"Article 105441"},"PeriodicalIF":3.6000,"publicationDate":"2024-09-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Loss Prevention in The Process Industries","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0950423024001992","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Acquiring and visualizing temperature data in real time in the event of a fire in an electrical and mechanical equipment room is of great significance. It can be applied to early fire detection and monitoring, help rescuers quickly understand the fire situation, develop effective fire extinguishing and evacuation plans, and provide valuable data support for subsequent accident investigation. Acoustic computed tomography (CT) temperature measurement technology has the benefits of high precision, non-contact, real-time and global, in order to explore the applicability of this technology in the acquisition of details about temperature in the fire scene of electrical and mechanical equipment room, this paper carries out the following research. A numerical model of the fire in the electrical and mechanical equipment room is constructed on the basis of fire dynamics simulator (FDS), and the basic temperature data is obtained. The large ill-conditioned matrix equation of acoustic flight is constructed under a variety of mesh division schemes, and the Simultaneous Algebraic Reconstruction Technique (SART) is used to figure it out. Then we accomplish the temperature field reconstruction of the electrical and mechanical equipment room in different fire stages. The effect of reconstruction is evaluated through the analysis of the difference between the original and rebuilt data. The conclusions demonstrate that the acoustic CT temperature measurement technique can achieve reconstructing the temperature field in real time and with accuracy under the appropriate reconstruction scheme. With the rise in the quantity of grid divisions, the morphology of the reconstructed high-temperature region of the fire field is more similar to the morphology of the basic fire field within a certain range.
期刊介绍:
The broad scope of the journal is process safety. Process safety is defined as the prevention and mitigation of process-related injuries and damage arising from process incidents involving fire, explosion and toxic release. Such undesired events occur in the process industries during the use, storage, manufacture, handling, and transportation of highly hazardous chemicals.