{"title":"Selection and planning of hazardous materials transportation routes based on explosion accident risks","authors":"Chenglin Zhai , Peilin Li , Ronghua Zhao , Nana Jing","doi":"10.1016/j.jlp.2024.105440","DOIUrl":null,"url":null,"abstract":"<div><div>The explosiveness of hazardous materials determines that once an accident occurs during transportation, severe damage will be imposed on surrounding targets. However, the increasing complexity of the road network significantly augments the risk of damage occurrence. To maintain low accident risks in transporting hazardous materials, this study proposes a method for selection and planning of transportation routes based on explosion accident risks. Firstly, the road network topology is associated with vehicle status to establish a relationship between the accident probability and speed gradient. Meanwhile, an independent grid-based approach is used to perform multi-level damage quantification on various objects. Secondly, route risks are quantitatively characterized, and a comparison system for multiple risk metrics is established. Based on search algorithms, route planning and risk ranking are achieved. Finally, the method is validated. It has been confirmed that this method can quickly and accurately obtain route ranking and risk distribution. The results offer practical guidance for relevant organizations to improve risk management and strategy development, and provide reference for future research.</div></div>","PeriodicalId":16291,"journal":{"name":"Journal of Loss Prevention in The Process Industries","volume":"92 ","pages":"Article 105440"},"PeriodicalIF":3.6000,"publicationDate":"2024-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Loss Prevention in The Process Industries","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0950423024001980","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0
Abstract
The explosiveness of hazardous materials determines that once an accident occurs during transportation, severe damage will be imposed on surrounding targets. However, the increasing complexity of the road network significantly augments the risk of damage occurrence. To maintain low accident risks in transporting hazardous materials, this study proposes a method for selection and planning of transportation routes based on explosion accident risks. Firstly, the road network topology is associated with vehicle status to establish a relationship between the accident probability and speed gradient. Meanwhile, an independent grid-based approach is used to perform multi-level damage quantification on various objects. Secondly, route risks are quantitatively characterized, and a comparison system for multiple risk metrics is established. Based on search algorithms, route planning and risk ranking are achieved. Finally, the method is validated. It has been confirmed that this method can quickly and accurately obtain route ranking and risk distribution. The results offer practical guidance for relevant organizations to improve risk management and strategy development, and provide reference for future research.
期刊介绍:
The broad scope of the journal is process safety. Process safety is defined as the prevention and mitigation of process-related injuries and damage arising from process incidents involving fire, explosion and toxic release. Such undesired events occur in the process industries during the use, storage, manufacture, handling, and transportation of highly hazardous chemicals.