Catherine C. Kneipp , Ronald Coilparampil , Mark Westman , Monica Suann , Jennifer Robson , Simon M. Firestone , Richard Malik , Siobhan M. Mor , Mark A. Stevenson , Anke K. Wiethoelter
{"title":"Evaluation of three serological tests for the diagnosis of Brucella suis in dogs using Bayesian latent class analysis","authors":"Catherine C. Kneipp , Ronald Coilparampil , Mark Westman , Monica Suann , Jennifer Robson , Simon M. Firestone , Richard Malik , Siobhan M. Mor , Mark A. Stevenson , Anke K. Wiethoelter","doi":"10.1016/j.prevetmed.2024.106345","DOIUrl":null,"url":null,"abstract":"<div><div><em>Brucella suis</em> infection of dogs is an emerging issue worldwide requiring specific management to address zoonotic risks and animal welfare concerns. Diagnosis in dogs is routinely based on serological testing, but to date these tests have only been validated for use in production animal species and humans. This study aimed to assess the diagnostic performance of three commonly used serological tests in dogs. Canine sera (n = 989) were tested with the Rose Bengal rapid plate agglutination test (RBRPT), the complement fixation test (CFT) and a competitive ELISA (C-ELISA). Diagnostic test performance was evaluated using a three test, two population Bayesian latent class analysis accounting for conditional dependence between the three tests. Positive and negative predictive values (PPV, NPV) were calculated for a range of expected prevalence estimates for the individual tests and test combinations interpreted in series and parallel. The RBRPT showed the highest individual Se of 0.902 (95 % posterior credible interval [PCI] 0.759–0.978) and the CFT the highest individual diagnostic specificity (Sp) of 0.914 (95 % PCI 0.886–0.946). The C-ELISA had marginally the best overall diagnostic performance (Youden’s index = 0.807). The CFT and the C-ELISA interpreted in parallel returned the highest combined Se and Sp (0.988 and 0.885, respectively). All tests returned NPVs of > 0.982 in 2–8 % prevalence settings. Series interpretation of the three-test combination as well as the two-test combinations of the RBRPT and the C-ELISA and the CFT and the C-ELISA produced a PPV of 0.502 when the estimated prevalence was 8 %. While all tests are suitable for the detection of <em>B. suis</em> antibodies in dogs, they should not be interpreted in isolation as their diagnostic value is dependent on the pre-test probability of the disease. As such they are useful tools for the diagnosis of <em>B. suis</em> in dogs when exposure, history and clinical presentation indicate a risk of brucellosis.</div></div>","PeriodicalId":20413,"journal":{"name":"Preventive veterinary medicine","volume":"233 ","pages":"Article 106345"},"PeriodicalIF":2.2000,"publicationDate":"2024-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Preventive veterinary medicine","FirstCategoryId":"97","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0167587724002319","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"VETERINARY SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Brucella suis infection of dogs is an emerging issue worldwide requiring specific management to address zoonotic risks and animal welfare concerns. Diagnosis in dogs is routinely based on serological testing, but to date these tests have only been validated for use in production animal species and humans. This study aimed to assess the diagnostic performance of three commonly used serological tests in dogs. Canine sera (n = 989) were tested with the Rose Bengal rapid plate agglutination test (RBRPT), the complement fixation test (CFT) and a competitive ELISA (C-ELISA). Diagnostic test performance was evaluated using a three test, two population Bayesian latent class analysis accounting for conditional dependence between the three tests. Positive and negative predictive values (PPV, NPV) were calculated for a range of expected prevalence estimates for the individual tests and test combinations interpreted in series and parallel. The RBRPT showed the highest individual Se of 0.902 (95 % posterior credible interval [PCI] 0.759–0.978) and the CFT the highest individual diagnostic specificity (Sp) of 0.914 (95 % PCI 0.886–0.946). The C-ELISA had marginally the best overall diagnostic performance (Youden’s index = 0.807). The CFT and the C-ELISA interpreted in parallel returned the highest combined Se and Sp (0.988 and 0.885, respectively). All tests returned NPVs of > 0.982 in 2–8 % prevalence settings. Series interpretation of the three-test combination as well as the two-test combinations of the RBRPT and the C-ELISA and the CFT and the C-ELISA produced a PPV of 0.502 when the estimated prevalence was 8 %. While all tests are suitable for the detection of B. suis antibodies in dogs, they should not be interpreted in isolation as their diagnostic value is dependent on the pre-test probability of the disease. As such they are useful tools for the diagnosis of B. suis in dogs when exposure, history and clinical presentation indicate a risk of brucellosis.
期刊介绍:
Preventive Veterinary Medicine is one of the leading international resources for scientific reports on animal health programs and preventive veterinary medicine. The journal follows the guidelines for standardizing and strengthening the reporting of biomedical research which are available from the CONSORT, MOOSE, PRISMA, REFLECT, STARD, and STROBE statements. The journal focuses on:
Epidemiology of health events relevant to domestic and wild animals;
Economic impacts of epidemic and endemic animal and zoonotic diseases;
Latest methods and approaches in veterinary epidemiology;
Disease and infection control or eradication measures;
The "One Health" concept and the relationships between veterinary medicine, human health, animal-production systems, and the environment;
Development of new techniques in surveillance systems and diagnosis;
Evaluation and control of diseases in animal populations.