{"title":"On a Discrete-Time Networked Epidemic Model With Time-Varying Heterogeneous Delays","authors":"Fangzhou Liu;Lei Shi;Jinliang Shao;Qingchen Liu","doi":"10.1109/LCSYS.2024.3463499","DOIUrl":null,"url":null,"abstract":"Delays caused by the incubation period of an infectious disease are inevitable in modeling the spreading of a real epidemic. With this in mind, our note proposes a novel discrete-time networked susceptible-infected-susceptible (SIS) epidemic model with delays. In this model, the independent edge-based time delay in the network is time-varying and heterogeneous. To prove the asymptotic stability of the model, a super-stochastic matrix based method is proposed to analyze the convergence of an infinite product. By using this method, a sufficient algebraic condition for the convergence of the model to the disease-free equilibrium point is established. The theoretical results obtained are verified by numerical simulations.","PeriodicalId":37235,"journal":{"name":"IEEE Control Systems Letters","volume":"8 ","pages":"2289-2294"},"PeriodicalIF":2.4000,"publicationDate":"2024-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Control Systems Letters","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10683698/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
Delays caused by the incubation period of an infectious disease are inevitable in modeling the spreading of a real epidemic. With this in mind, our note proposes a novel discrete-time networked susceptible-infected-susceptible (SIS) epidemic model with delays. In this model, the independent edge-based time delay in the network is time-varying and heterogeneous. To prove the asymptotic stability of the model, a super-stochastic matrix based method is proposed to analyze the convergence of an infinite product. By using this method, a sufficient algebraic condition for the convergence of the model to the disease-free equilibrium point is established. The theoretical results obtained are verified by numerical simulations.