{"title":"Two-stage Transient-Stability-Constrained Optimal Power Flow for Preventive Control of Rotor Angle Stability and Voltage Sags","authors":"Jorge Uriel Sevilla-Romero;Alejandro Pizano-Martínez;Claudio Rubén Fuerte-Esquivel;Reymundo Ramírez-Betancour","doi":"10.35833/MPCE.2023.000461","DOIUrl":null,"url":null,"abstract":"In practice, an equilibrium point of the power system is considered transiently secure if it can withstand a specified contingency by maintaining transient evolution of rotor angles and voltage magnitudes within set bounds. A novel sequential approach is proposed to obtain transiently stable equilibrium points through the preventive control of transient stability and transient voltage sag (TVS) problems caused by a severe disturbance. The proposed approach conducts a sequence of non-heuristic optimal active power re-dispatch of the generators to steer the system toward a transiently secure operating point by sequentially solving the transient-stability-constrained optimal power flow (TSC-OPF) problems. In the proposed approach, there are two sequential projection stages, with the first stage ensuring the rotor angle stability and the second stage removing TVS in voltage magnitudes. In both projection stages, the projection operation corresponds to the TSC-OPF, with its formulation directly derived by adding only two steady-state variable-based transient constraints to the conventional OPF problem. The effectiveness of this approach is numerically demonstrated in terms of its accuracy and computational performance by using the Western System Coordinated Council (WSCC) 3-machine 9-bus system and an equivalent model of the Mexican 46-machine 190-bus system.","PeriodicalId":51326,"journal":{"name":"Journal of Modern Power Systems and Clean Energy","volume":"12 5","pages":"1357-1369"},"PeriodicalIF":5.7000,"publicationDate":"2023-12-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10375948","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Modern Power Systems and Clean Energy","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10375948/","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
In practice, an equilibrium point of the power system is considered transiently secure if it can withstand a specified contingency by maintaining transient evolution of rotor angles and voltage magnitudes within set bounds. A novel sequential approach is proposed to obtain transiently stable equilibrium points through the preventive control of transient stability and transient voltage sag (TVS) problems caused by a severe disturbance. The proposed approach conducts a sequence of non-heuristic optimal active power re-dispatch of the generators to steer the system toward a transiently secure operating point by sequentially solving the transient-stability-constrained optimal power flow (TSC-OPF) problems. In the proposed approach, there are two sequential projection stages, with the first stage ensuring the rotor angle stability and the second stage removing TVS in voltage magnitudes. In both projection stages, the projection operation corresponds to the TSC-OPF, with its formulation directly derived by adding only two steady-state variable-based transient constraints to the conventional OPF problem. The effectiveness of this approach is numerically demonstrated in terms of its accuracy and computational performance by using the Western System Coordinated Council (WSCC) 3-machine 9-bus system and an equivalent model of the Mexican 46-machine 190-bus system.
期刊介绍:
Journal of Modern Power Systems and Clean Energy (MPCE), commencing from June, 2013, is a newly established, peer-reviewed and quarterly published journal in English. It is the first international power engineering journal originated in mainland China. MPCE publishes original papers, short letters and review articles in the field of modern power systems with focus on smart grid technology and renewable energy integration, etc.