{"title":"Efficient and robust sequential decision making algorithms","authors":"Pan Xu","doi":"10.1002/aaai.12186","DOIUrl":null,"url":null,"abstract":"<p>Sequential decision-making involves making informed decisions based on continuous interactions with a complex environment. This process is ubiquitous in various applications, including recommendation systems and clinical treatment design. My research has concentrated on addressing two pivotal challenges in sequential decision-making: (1) How can we design algorithms that efficiently learn the optimal decision strategy with minimal interactions and limited sample data? (2) How can we ensure robustness in decision-making algorithms when faced with distributional shifts due to environmental changes and the sim-to-real gap? This paper summarizes and expands upon the talk I presented at the AAAI 2024 New Faculty Highlights program, detailing how my research aims to tackle these challenges.</p>","PeriodicalId":7854,"journal":{"name":"Ai Magazine","volume":"45 3","pages":"376-385"},"PeriodicalIF":2.5000,"publicationDate":"2024-09-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/aaai.12186","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ai Magazine","FirstCategoryId":"94","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/aaai.12186","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0
Abstract
Sequential decision-making involves making informed decisions based on continuous interactions with a complex environment. This process is ubiquitous in various applications, including recommendation systems and clinical treatment design. My research has concentrated on addressing two pivotal challenges in sequential decision-making: (1) How can we design algorithms that efficiently learn the optimal decision strategy with minimal interactions and limited sample data? (2) How can we ensure robustness in decision-making algorithms when faced with distributional shifts due to environmental changes and the sim-to-real gap? This paper summarizes and expands upon the talk I presented at the AAAI 2024 New Faculty Highlights program, detailing how my research aims to tackle these challenges.
期刊介绍:
AI Magazine publishes original articles that are reasonably self-contained and aimed at a broad spectrum of the AI community. Technical content should be kept to a minimum. In general, the magazine does not publish articles that have been published elsewhere in whole or in part. The magazine welcomes the contribution of articles on the theory and practice of AI as well as general survey articles, tutorial articles on timely topics, conference or symposia or workshop reports, and timely columns on topics of interest to AI scientists.