Qirui Zhang, Ton Falqués-Costa, Mattias Pilheden, Helena Sturesson, Tina Ovlund, Vendela Rissler, Anders Castor, Hanne V. H. Marquart, Birgitte Lausen, Thoas Fioretos, Axel Hyrenius-Wittsten, Anna K. Hagström-Andersson
{"title":"Activating mutations remodel the chromatin accessibility landscape to drive distinct regulatory networks in KMT2A-rearranged acute leukemia","authors":"Qirui Zhang, Ton Falqués-Costa, Mattias Pilheden, Helena Sturesson, Tina Ovlund, Vendela Rissler, Anders Castor, Hanne V. H. Marquart, Birgitte Lausen, Thoas Fioretos, Axel Hyrenius-Wittsten, Anna K. Hagström-Andersson","doi":"10.1002/hem3.70006","DOIUrl":null,"url":null,"abstract":"<p>Activating <i>FLT3</i> and <i>RAS</i> mutations commonly occur in leukemia with <i>KMT2A</i>-gene rearrangements (<i>KMT2A</i>-r). However, how these mutations cooperate with the <i>KMT2A</i>-r to remodel the epigenetic landscape is unknown. Using a retroviral acute myeloid leukemia (AML) mouse model driven by <i>KMT2A::MLLT3</i>, we show that <i>FLT3</i><sup><i>ITD</i></sup>, <i>FLT3</i><sup><i>N676K</i></sup>, and <i>NRAS</i><sup><i>G12D</i></sup> remodeled the chromatin accessibility landscape and associated transcriptional networks. Although the activating mutations shared a common core of chromatin changes, each mutation exhibits unique profiles with most opened peaks associating with enhancers in intronic or intergenic regions. Specifically, <i>FLT3</i><sup><i>N676K</i></sup> and <i>NRAS</i><sup><i>G12D</i></sup> rewired similar chromatin and transcriptional networks, distinct from those mediated by <i>FLT3</i><sup><i>ITD</i></sup>. Motif analysis uncovered a role for the AP-1 family of transcription factors in <i>KMT2A::MLLT3</i> leukemia with <i>FLT3</i><sup><i>N676K</i></sup> and <i>NRAS</i><sup><i>G12D</i></sup>, whereas Runx1 and Stat5a/Stat5b were active in the presence of <i>FLT3</i><sup><i>ITD</i></sup>. Furthermore, transcriptional programs linked to immune cell regulation were activated in <i>KMT2A</i>-r AML expressing <i>NRAS</i><sup><i>G12D</i></sup> or <i>FLT3</i><sup><i>N676K</i></sup>, and the expression of NKG2D-ligands on <i>KMT2A</i>-r cells rendered them sensitive to CAR T cell-mediated killing. Human <i>KMT2A</i>-r AML cells could be pharmacologically sensitized to NKG2D-CAR T cells by treatment with the histone deacetylase inhibitor LBH589 (panobinostat) which caused upregulation of NKG2D-ligand levels. Co-treatment with LBH589 and NKG2D-CAR T cells enabled robust AML cell killing, and the strongest effect was observed for cells expressing <i>NRAS</i><sup><i>G12D</i></sup>. Finally, the results were validated and extended to acute leukemia in infancy. Combined, activating mutations induced mutation-specific changes in the epigenetic landscape, leading to changes in transcriptional programs orchestrated by specific transcription factor networks.</p>","PeriodicalId":12982,"journal":{"name":"HemaSphere","volume":null,"pages":null},"PeriodicalIF":7.6000,"publicationDate":"2024-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/hem3.70006","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"HemaSphere","FirstCategoryId":"3","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/hem3.70006","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"HEMATOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Activating FLT3 and RAS mutations commonly occur in leukemia with KMT2A-gene rearrangements (KMT2A-r). However, how these mutations cooperate with the KMT2A-r to remodel the epigenetic landscape is unknown. Using a retroviral acute myeloid leukemia (AML) mouse model driven by KMT2A::MLLT3, we show that FLT3ITD, FLT3N676K, and NRASG12D remodeled the chromatin accessibility landscape and associated transcriptional networks. Although the activating mutations shared a common core of chromatin changes, each mutation exhibits unique profiles with most opened peaks associating with enhancers in intronic or intergenic regions. Specifically, FLT3N676K and NRASG12D rewired similar chromatin and transcriptional networks, distinct from those mediated by FLT3ITD. Motif analysis uncovered a role for the AP-1 family of transcription factors in KMT2A::MLLT3 leukemia with FLT3N676K and NRASG12D, whereas Runx1 and Stat5a/Stat5b were active in the presence of FLT3ITD. Furthermore, transcriptional programs linked to immune cell regulation were activated in KMT2A-r AML expressing NRASG12D or FLT3N676K, and the expression of NKG2D-ligands on KMT2A-r cells rendered them sensitive to CAR T cell-mediated killing. Human KMT2A-r AML cells could be pharmacologically sensitized to NKG2D-CAR T cells by treatment with the histone deacetylase inhibitor LBH589 (panobinostat) which caused upregulation of NKG2D-ligand levels. Co-treatment with LBH589 and NKG2D-CAR T cells enabled robust AML cell killing, and the strongest effect was observed for cells expressing NRASG12D. Finally, the results were validated and extended to acute leukemia in infancy. Combined, activating mutations induced mutation-specific changes in the epigenetic landscape, leading to changes in transcriptional programs orchestrated by specific transcription factor networks.
期刊介绍:
HemaSphere, as a publication, is dedicated to disseminating the outcomes of profoundly pertinent basic, translational, and clinical research endeavors within the field of hematology. The journal actively seeks robust studies that unveil novel discoveries with significant ramifications for hematology.
In addition to original research, HemaSphere features review articles and guideline articles that furnish lucid synopses and discussions of emerging developments, along with recommendations for patient care.
Positioned as the foremost resource in hematology, HemaSphere augments its offerings with specialized sections like HemaTopics and HemaPolicy. These segments engender insightful dialogues covering a spectrum of hematology-related topics, including digestible summaries of pivotal articles, updates on new therapies, deliberations on European policy matters, and other noteworthy news items within the field. Steering the course of HemaSphere are Editor in Chief Jan Cools and Deputy Editor in Chief Claire Harrison, alongside the guidance of an esteemed Editorial Board comprising international luminaries in both research and clinical realms, each representing diverse areas of hematologic expertise.