Anouk Voutaz, Jean Bonnemain, Zied Ltaief, Oriol Manuel, Lucas Liaudet
{"title":"Prognostic role of early blood gas variables in critically ill patients with Pneumocystis jirovecii pneumonia: a retrospective analysis","authors":"Anouk Voutaz, Jean Bonnemain, Zied Ltaief, Oriol Manuel, Lucas Liaudet","doi":"10.1186/s13054-024-05087-8","DOIUrl":null,"url":null,"abstract":"<p><i>Pneumocystis jirovecii</i> pneumonia (PJP) is a severe fungal opportunistic infection occurring in immunocompromised patients, commonly associated with Human Immunodeficiency Virus (HIV) in the past and nowadays increasingly diagnosed in non-HIV patients with immune suppression. Severe PJP requiring admission to the intensive care unit is associated with mortality rates > 50%, and several factors have been associated with reduced survival including age, a non-HIV status, invasive mechanical ventilation and the admission SOFA score [1, 2]. Whether additional prognostic factors might help identify high-risk patients at an early stage of ICU stay remains undefined. To address this issue, we retrospectively analyzed (study protocol approved by our ethical committee, CER-VD Nr 2020-00201) the clinical and early (admission—day 0- and day 1) arterial blood gas (ABG) variables, including values of methemoglobin (MetHb) and carboxyhemoglobin (HbCO), in a cohort of PJP patients admitted to our multidisciplinary ICU between 2006 and 2019. The primary outcome was mortality at day 60. Data were compared between survivors and non survivors using the Wilcoxon’s rank sum test and the Pearson’s chi-squared test, and univariate logistic regression analyses were done to evaluate associations between variables and 60-day mortality. We also performed a multivariable analysis incorporating invasive mechanical ventilation at day 1 as a possible confounder, with blood gas data at day 1 (PaCO<sub>2</sub>, HbCO and MetHb) as explanatory co-variables. The impact of blood gas variables on 60-day survival was further assessed using Kaplan–Meier plots and log-rank test analysis.</p><p>A total of 37 patients with confirmed <i>Pneumocystis jirovecii</i> infection (except in one patient in whom no sample could be obtained, but with typical clinical/radiological presentation and a positive beta-glucan test) were included. Underlying diagnoses were malignancy (n = 21), chronic immune-mediated inflammatory disease (n = 8), HIV (n = 5), solid organ (n = 4) or bone marrow transplantation (n = 5), with more than 1 condition present in 6 patients. Most patients had been treated prior to admission with one or more immune suppressive therapies. The 60-day mortality was 51% (19/37 patients). Non-survivors were significantly older but did not differ from survivors with respect to gender and underlying diagnoses. All patients received non-invasive and/or invasive respiratory support, and non-survivors required significantly more often invasive mechanical ventilation (79 vs. 39%, <i>p</i> < 0.05). ABG analyses showed that non-survivors had higher PaCO<sub>2</sub> (day 1), lower pHa and higher MetHb as well as a trend for higher HbCO (day 0 and day 1). In contrast, P/F O<sub>2</sub> was comparable in survivors and non-survivors at the two time-points. In univariate analyses, day 0 HbCO and MetHb, and day 1 PaCO<sub>2</sub>, pHa and MetHb were significantly associated with 60-day mortality (Fig. 1A). In multivariable analysis, PaCO<sub>2</sub> and MetHb at day 1 remained significantly associated with 60-day mortality (Fig. 1B). Kaplan–Meier analyses showed that patients with higher MetHb and lower pHa at day 0 (not shown), as well as higher HbCO, PaCO<sub>2</sub> and MetHb, as well as lower pHa at day 1 (Fig. 1C) had significantly shorter survival.</p><figure><figcaption><b data-test=\"figure-caption-text\">Fig. 1</b></figcaption><picture><source srcset=\"//media.springernature.com/lw685/springer-static/image/art%3A10.1186%2Fs13054-024-05087-8/MediaObjects/13054_2024_5087_Fig1_HTML.png?as=webp\" type=\"image/webp\"/><img alt=\"figure 1\" aria-describedby=\"Fig1\" height=\"927\" loading=\"lazy\" src=\"//media.springernature.com/lw685/springer-static/image/art%3A10.1186%2Fs13054-024-05087-8/MediaObjects/13054_2024_5087_Fig1_HTML.png\" width=\"685\"/></picture><p>Arterial blood gas data at day 0 and day 1. <b>A</b> P/FO<sub>2</sub>, PaCO<sub>2</sub>, pHa, HbCO and MetHb at day 0 and day 1 in survivors and non-survivors (median, interquartile rage) and their univariate association with 60-day mortality. <b>B</b> Multivariable analysis of factors associated with 60-day mortality. <b>C</b> Kaplan–Meier plots illustrating the proportion of survivors in the 60-day observation period, as a function of PaCO<sub>2</sub>, (in mmHg), pHa, MetHb and HbCO at day 1, dichotomized according to their median values in the whole cohort. For continuous variables, odds ratios (OR) and 95% confidence intervals (CI) were calculated per unit change (P/FO<sub>2</sub>: 10 mm Hg; PaCO<sub>2</sub>: 1 mm Hg; pHa: 0.01 pH unit; HbCO: 0.1%; MetHb: 0.1%). Note: At day 0, P/FO<sub>2</sub> missing in 1 patient (survivor), HbCO and MetHB not measured in 3 patients (2 survivors, 1 non survivors). At day 1: ABG not obtained in 3 patients (1 non-survivor, 2 survivors), in whom HbCO and MetHb were obtained from central venous blood gas analysis. <i>IMV</i> invasive mechanical ventilation</p><span>Full size image</span><svg aria-hidden=\"true\" focusable=\"false\" height=\"16\" role=\"img\" width=\"16\"><use xlink:href=\"#icon-eds-i-chevron-right-small\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"></use></svg></figure><p>Our study found that several ABG variables obtained during the first 24 h of ICU admission may provide important early prognostic information in patients with PJP. The higher PaCO<sub>2</sub> and lower pHa in non-survivors could either reflect the development of respiratory fatigue or increased dead space ventilation, which would be consistent with the negative impact of higher dead space fraction in other forms of acute respiratory failure [3]. Non-survivors also displayed higher levels of MetHb, whose values at day 0 and day 1 were significantly associated with 60-day mortality. MetHb formed from Hb autooxidation is normally maintained at very low levels due to the activity of MetHb reductase, but may increase in critically ill patients with sepsis, or treated with inhaled NO or prooxidant drugs such as dapsone [4]. Since none of our patients received these therapies at the time of MetHb measurements, we propose that MetHb formation could reflect more severe lung inflammation, favoring a greater pro-oxidant environment fostering hemoglobin oxidation. We also noted, to a lesser extent, that HbCO was higher in non-survivors and that its value at admission was associated with 60-day mortality. Endogenous CO formation results from the activity of heme oxygenase (HO), and pulmonary HO induction has been reported in a variety of lung inflammatory diseases [5]. Therefore, we speculate that the early increase of HbCO in PJP non-survivors could reflect such an induction of HO due to more severe lung inflammation. In summary, we found that, in patients admitted to the ICU for acute respiratory failure due to <i>Pneumocystis jirovecii</i> pneumonia, several early (first 24 h) changes in arterial blood gases present a significant association with 60-day mortality. These include a higher PaCO<sub>2</sub>, a lower arterial pH, higher values of methemoglobin and (to a lesser extent) carboxyhemoglobin. Whether the recognition of these early prognostic variables could alter patient management and result in a better outcome should require further studies.</p><p>All data generated or analyzed during this study are included in this article.</p><ol data-track-component=\"outbound reference\" data-track-context=\"references section\"><li data-counter=\"1.\"><p>Lecuyer R, Issa N, Camou F, Lavergne RA, Gabriel F, Morio F, et al. Characteristics and prognosis factors of <i>Pneumocystis jirovecii</i> pneumonia according to underlying disease: a retrospective multicenter study. Chest. 2024;165:1319–29.</p><p>Article PubMed Google Scholar </p></li><li data-counter=\"2.\"><p>Giacobbe DR, Dettori S, Di Pilato V, Asperges E, Ball L, Berti E, et al. Pneumocystis jirovecii pneumonia in intensive care units: a multicenter study by ESGCIP and EFISG. Crit Care. 2023;27:323.</p><p>Article PubMed PubMed Central Google Scholar </p></li><li data-counter=\"3.\"><p>Kallet RH, Zhuo H, Ho K, Lipnick MS, Gomez A, Matthay MA. Lung injury etiology and other factors influencing the relationship between dead-space fraction and mortality in ARDS. Respir Care. 2017;62:1241–8.</p><p>Article PubMed Google Scholar </p></li><li data-counter=\"4.\"><p>Belzer A, Krasowski MD. Causes of acquired methemoglobinemia—a retrospective study at a large academic hospital. Toxicol Rep. 2024;12:331–7.</p><p>Article CAS PubMed PubMed Central Google Scholar </p></li><li data-counter=\"5.\"><p>Nagasawa R, Hara Y, Murohashi K, Aoki A, Kobayashi N, Takagi S, et al. Serum heme oxygenase-1 measurement is useful for evaluating disease activity and outcomes in patients with acute respiratory distress syndrome and acute exacerbation of interstitial lung disease. BMC Pulm Med. 2020;20:310.</p><p>Article CAS PubMed PubMed Central Google Scholar </p></li></ol><p>Download references<svg aria-hidden=\"true\" focusable=\"false\" height=\"16\" role=\"img\" width=\"16\"><use xlink:href=\"#icon-eds-i-download-medium\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"></use></svg></p><p>None</p><p>None to declare.</p><h3>Authors and Affiliations</h3><ol><li><p>Service of Adult Intensive Care Medicine, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland</p><p>Anouk Voutaz, Jean Bonnemain, Zied Ltaief & Lucas Liaudet</p></li><li><p>Service of Infectious Diseases, Faculty of Biology and Medicine, Lausanne University Hospital, University of Lausanne, 1010, Lausanne, Switzerland</p><p>Oriol Manuel</p></li></ol><span>Authors</span><ol><li><span>Anouk Voutaz</span>View author publications<p>You can also search for this author in <span>PubMed<span> </span>Google Scholar</span></p></li><li><span>Jean Bonnemain</span>View author publications<p>You can also search for this author in <span>PubMed<span> </span>Google Scholar</span></p></li><li><span>Zied Ltaief</span>View author publications<p>You can also search for this author in <span>PubMed<span> </span>Google Scholar</span></p></li><li><span>Oriol Manuel</span>View author publications<p>You can also search for this author in <span>PubMed<span> </span>Google Scholar</span></p></li><li><span>Lucas Liaudet</span>View author publications<p>You can also search for this author in <span>PubMed<span> </span>Google Scholar</span></p></li></ol><h3>Contributions</h3><p>AV: Experimental design; investigation; data curation; formal analysis; writing: original draft, JB: Formal analysis; writing: review and editing, ZL: Formal analysis; writing: review and editing, OM: Formal analysis; writing: review and editing, LL: Formal analysis; writing: original draft, review and editing.</p><h3>Corresponding author</h3><p>Correspondence to Lucas Liaudet.</p><h3>Ethics approval and consent to participate</h3>\n<p>The study was approved by our local ethical committee (Commission cantonale d'éthique de la recherche sur l’être humain, CER-VD, project number 2020–00201).</p>\n<h3>Consent for publication</h3>\n<p>Not applicable.</p>\n<h3>Competing interests</h3>\n<p>The authors declare no competing interests.</p><h3>Publisher's Note</h3><p>Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.</p><p><b>Open Access</b> This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License, which permits any non-commercial use, sharing, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if you modified the licensed material. You do not have permission under this licence to share adapted material derived from this article or parts of it. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by-nc-nd/4.0/.</p>\n<p>Reprints and permissions</p><img alt=\"Check for updates. Verify currency and authenticity via CrossMark\" height=\"81\" loading=\"lazy\" src=\"\" width=\"57\"/><h3>Cite this article</h3><p>Voutaz, A., Bonnemain, J., Ltaief, Z. <i>et al.</i> Prognostic role of early blood gas variables in critically ill patients with <i>Pneumocystis jirovecii</i> pneumonia: a retrospective analysis. <i>Crit Care</i> <b>28</b>, 318 (2024). https://doi.org/10.1186/s13054-024-05087-8</p><p>Download citation<svg aria-hidden=\"true\" focusable=\"false\" height=\"16\" role=\"img\" width=\"16\"><use xlink:href=\"#icon-eds-i-download-medium\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"></use></svg></p><ul data-test=\"publication-history\"><li><p>Received<span>: </span><span><time datetime=\"2024-09-03\">03 September 2024</time></span></p></li><li><p>Accepted<span>: </span><span><time datetime=\"2024-09-05\">05 September 2024</time></span></p></li><li><p>Published<span>: </span><span><time datetime=\"2024-09-27\">27 September 2024</time></span></p></li><li><p>DOI</abbr><span>: </span><span>https://doi.org/10.1186/s13054-024-05087-8</span></p></li></ul><h3>Share this article</h3><p>Anyone you share the following link with will be able to read this content:</p><button data-track=\"click\" data-track-action=\"get shareable link\" data-track-external=\"\" data-track-label=\"button\" type=\"button\">Get shareable link</button><p>Sorry, a shareable link is not currently available for this article.</p><p data-track=\"click\" data-track-action=\"select share url\" data-track-label=\"button\"></p><button data-track=\"click\" data-track-action=\"copy share url\" data-track-external=\"\" data-track-label=\"button\" type=\"button\">Copy to clipboard</button><p> Provided by the Springer Nature SharedIt content-sharing initiative </p>","PeriodicalId":10811,"journal":{"name":"Critical Care","volume":"41 1","pages":""},"PeriodicalIF":8.8000,"publicationDate":"2024-09-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Critical Care","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s13054-024-05087-8","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CRITICAL CARE MEDICINE","Score":null,"Total":0}
引用次数: 0
Abstract
Pneumocystis jirovecii pneumonia (PJP) is a severe fungal opportunistic infection occurring in immunocompromised patients, commonly associated with Human Immunodeficiency Virus (HIV) in the past and nowadays increasingly diagnosed in non-HIV patients with immune suppression. Severe PJP requiring admission to the intensive care unit is associated with mortality rates > 50%, and several factors have been associated with reduced survival including age, a non-HIV status, invasive mechanical ventilation and the admission SOFA score [1, 2]. Whether additional prognostic factors might help identify high-risk patients at an early stage of ICU stay remains undefined. To address this issue, we retrospectively analyzed (study protocol approved by our ethical committee, CER-VD Nr 2020-00201) the clinical and early (admission—day 0- and day 1) arterial blood gas (ABG) variables, including values of methemoglobin (MetHb) and carboxyhemoglobin (HbCO), in a cohort of PJP patients admitted to our multidisciplinary ICU between 2006 and 2019. The primary outcome was mortality at day 60. Data were compared between survivors and non survivors using the Wilcoxon’s rank sum test and the Pearson’s chi-squared test, and univariate logistic regression analyses were done to evaluate associations between variables and 60-day mortality. We also performed a multivariable analysis incorporating invasive mechanical ventilation at day 1 as a possible confounder, with blood gas data at day 1 (PaCO2, HbCO and MetHb) as explanatory co-variables. The impact of blood gas variables on 60-day survival was further assessed using Kaplan–Meier plots and log-rank test analysis.
A total of 37 patients with confirmed Pneumocystis jirovecii infection (except in one patient in whom no sample could be obtained, but with typical clinical/radiological presentation and a positive beta-glucan test) were included. Underlying diagnoses were malignancy (n = 21), chronic immune-mediated inflammatory disease (n = 8), HIV (n = 5), solid organ (n = 4) or bone marrow transplantation (n = 5), with more than 1 condition present in 6 patients. Most patients had been treated prior to admission with one or more immune suppressive therapies. The 60-day mortality was 51% (19/37 patients). Non-survivors were significantly older but did not differ from survivors with respect to gender and underlying diagnoses. All patients received non-invasive and/or invasive respiratory support, and non-survivors required significantly more often invasive mechanical ventilation (79 vs. 39%, p < 0.05). ABG analyses showed that non-survivors had higher PaCO2 (day 1), lower pHa and higher MetHb as well as a trend for higher HbCO (day 0 and day 1). In contrast, P/F O2 was comparable in survivors and non-survivors at the two time-points. In univariate analyses, day 0 HbCO and MetHb, and day 1 PaCO2, pHa and MetHb were significantly associated with 60-day mortality (Fig. 1A). In multivariable analysis, PaCO2 and MetHb at day 1 remained significantly associated with 60-day mortality (Fig. 1B). Kaplan–Meier analyses showed that patients with higher MetHb and lower pHa at day 0 (not shown), as well as higher HbCO, PaCO2 and MetHb, as well as lower pHa at day 1 (Fig. 1C) had significantly shorter survival.
Our study found that several ABG variables obtained during the first 24 h of ICU admission may provide important early prognostic information in patients with PJP. The higher PaCO2 and lower pHa in non-survivors could either reflect the development of respiratory fatigue or increased dead space ventilation, which would be consistent with the negative impact of higher dead space fraction in other forms of acute respiratory failure [3]. Non-survivors also displayed higher levels of MetHb, whose values at day 0 and day 1 were significantly associated with 60-day mortality. MetHb formed from Hb autooxidation is normally maintained at very low levels due to the activity of MetHb reductase, but may increase in critically ill patients with sepsis, or treated with inhaled NO or prooxidant drugs such as dapsone [4]. Since none of our patients received these therapies at the time of MetHb measurements, we propose that MetHb formation could reflect more severe lung inflammation, favoring a greater pro-oxidant environment fostering hemoglobin oxidation. We also noted, to a lesser extent, that HbCO was higher in non-survivors and that its value at admission was associated with 60-day mortality. Endogenous CO formation results from the activity of heme oxygenase (HO), and pulmonary HO induction has been reported in a variety of lung inflammatory diseases [5]. Therefore, we speculate that the early increase of HbCO in PJP non-survivors could reflect such an induction of HO due to more severe lung inflammation. In summary, we found that, in patients admitted to the ICU for acute respiratory failure due to Pneumocystis jirovecii pneumonia, several early (first 24 h) changes in arterial blood gases present a significant association with 60-day mortality. These include a higher PaCO2, a lower arterial pH, higher values of methemoglobin and (to a lesser extent) carboxyhemoglobin. Whether the recognition of these early prognostic variables could alter patient management and result in a better outcome should require further studies.
All data generated or analyzed during this study are included in this article.
Lecuyer R, Issa N, Camou F, Lavergne RA, Gabriel F, Morio F, et al. Characteristics and prognosis factors of Pneumocystis jirovecii pneumonia according to underlying disease: a retrospective multicenter study. Chest. 2024;165:1319–29.
Article PubMed Google Scholar
Giacobbe DR, Dettori S, Di Pilato V, Asperges E, Ball L, Berti E, et al. Pneumocystis jirovecii pneumonia in intensive care units: a multicenter study by ESGCIP and EFISG. Crit Care. 2023;27:323.
Article PubMed PubMed Central Google Scholar
Kallet RH, Zhuo H, Ho K, Lipnick MS, Gomez A, Matthay MA. Lung injury etiology and other factors influencing the relationship between dead-space fraction and mortality in ARDS. Respir Care. 2017;62:1241–8.
Article PubMed Google Scholar
Belzer A, Krasowski MD. Causes of acquired methemoglobinemia—a retrospective study at a large academic hospital. Toxicol Rep. 2024;12:331–7.
Article CAS PubMed PubMed Central Google Scholar
Nagasawa R, Hara Y, Murohashi K, Aoki A, Kobayashi N, Takagi S, et al. Serum heme oxygenase-1 measurement is useful for evaluating disease activity and outcomes in patients with acute respiratory distress syndrome and acute exacerbation of interstitial lung disease. BMC Pulm Med. 2020;20:310.
Article CAS PubMed PubMed Central Google Scholar
Download references
None
None to declare.
Authors and Affiliations
Service of Adult Intensive Care Medicine, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
Anouk Voutaz, Jean Bonnemain, Zied Ltaief & Lucas Liaudet
Service of Infectious Diseases, Faculty of Biology and Medicine, Lausanne University Hospital, University of Lausanne, 1010, Lausanne, Switzerland
Oriol Manuel
Authors
Anouk VoutazView author publications
You can also search for this author in PubMedGoogle Scholar
Jean BonnemainView author publications
You can also search for this author in PubMedGoogle Scholar
Zied LtaiefView author publications
You can also search for this author in PubMedGoogle Scholar
Oriol ManuelView author publications
You can also search for this author in PubMedGoogle Scholar
Lucas LiaudetView author publications
You can also search for this author in PubMedGoogle Scholar
Contributions
AV: Experimental design; investigation; data curation; formal analysis; writing: original draft, JB: Formal analysis; writing: review and editing, ZL: Formal analysis; writing: review and editing, OM: Formal analysis; writing: review and editing, LL: Formal analysis; writing: original draft, review and editing.
Corresponding author
Correspondence to Lucas Liaudet.
Ethics approval and consent to participate
The study was approved by our local ethical committee (Commission cantonale d'éthique de la recherche sur l’être humain, CER-VD, project number 2020–00201).
Consent for publication
Not applicable.
Competing interests
The authors declare no competing interests.
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Open Access This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License, which permits any non-commercial use, sharing, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if you modified the licensed material. You do not have permission under this licence to share adapted material derived from this article or parts of it. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by-nc-nd/4.0/.
Reprints and permissions
Cite this article
Voutaz, A., Bonnemain, J., Ltaief, Z. et al. Prognostic role of early blood gas variables in critically ill patients with Pneumocystis jirovecii pneumonia: a retrospective analysis. Crit Care28, 318 (2024). https://doi.org/10.1186/s13054-024-05087-8
Download citation
Received:
Accepted:
Published:
DOI: https://doi.org/10.1186/s13054-024-05087-8
Share this article
Anyone you share the following link with will be able to read this content:
Sorry, a shareable link is not currently available for this article.
Provided by the Springer Nature SharedIt content-sharing initiative
期刊介绍:
Critical Care is an esteemed international medical journal that undergoes a rigorous peer-review process to maintain its high quality standards. Its primary objective is to enhance the healthcare services offered to critically ill patients. To achieve this, the journal focuses on gathering, exchanging, disseminating, and endorsing evidence-based information that is highly relevant to intensivists. By doing so, Critical Care seeks to provide a thorough and inclusive examination of the intensive care field.