Heterogeneous Carbonylation of Alcohols on Charge-Density-Distinct Mo-Ni Dual Sites Localized at Edge Sulfur Vacancies

IF 16.1 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY Angewandte Chemie International Edition Pub Date : 2024-09-26 DOI:10.1002/anie.202411632
Qiao Yuan, Yating Gu, Weimiao Chen, Yue Zhang, Xiangen Song, Yangming Ding, Xingju Li, Lei Zhu, Zheng Jiang, Li Yan, Jing Ma, Yunjie Ding
{"title":"Heterogeneous Carbonylation of Alcohols on Charge-Density-Distinct Mo-Ni Dual Sites Localized at Edge Sulfur Vacancies","authors":"Qiao Yuan, Yating Gu, Weimiao Chen, Yue Zhang, Xiangen Song, Yangming Ding, Xingju Li, Lei Zhu, Zheng Jiang, Li Yan, Jing Ma, Yunjie Ding","doi":"10.1002/anie.202411632","DOIUrl":null,"url":null,"abstract":"Alcohols carbonylation is of great importance in industry but remains a challenge to abandon the usage of the halide additives and noble metals. Here we report the realization of direct alcohols heterogeneous carbonylation to carbonyl-containing chemicals, especially in methanol carbonylation, with a remarkable space-time-yield (STY) of 4.74 molacetyl/kgcat./h and a durable stability as long as 100 h on Ni@MoS2 catalyst. Mechanistic analysis reveals that the Mo-Ni dual sites localized at edge sulfur vacancies of Ni@MoS2 exhibit distinct charge density, which strongly activate CH3OH to break its C-O bond and non-dissociatively activate CO. Density functional theory calculations further suggest that the low charge density in Mo-Ni, the Ni site, could significantly lower the barrier for CO migration and nucleophilic attack of methoxy species, and finally leads to the rapid formation of acetyl products. Ni@MoS2 catalyst could also effectively realize the carbonylation of ethanol, n-propanol and n-butanol to their acyl products, which may demonstrate its universal application for alcohols carbonylation.","PeriodicalId":125,"journal":{"name":"Angewandte Chemie International Edition","volume":null,"pages":null},"PeriodicalIF":16.1000,"publicationDate":"2024-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Angewandte Chemie International Edition","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1002/anie.202411632","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Alcohols carbonylation is of great importance in industry but remains a challenge to abandon the usage of the halide additives and noble metals. Here we report the realization of direct alcohols heterogeneous carbonylation to carbonyl-containing chemicals, especially in methanol carbonylation, with a remarkable space-time-yield (STY) of 4.74 molacetyl/kgcat./h and a durable stability as long as 100 h on Ni@MoS2 catalyst. Mechanistic analysis reveals that the Mo-Ni dual sites localized at edge sulfur vacancies of Ni@MoS2 exhibit distinct charge density, which strongly activate CH3OH to break its C-O bond and non-dissociatively activate CO. Density functional theory calculations further suggest that the low charge density in Mo-Ni, the Ni site, could significantly lower the barrier for CO migration and nucleophilic attack of methoxy species, and finally leads to the rapid formation of acetyl products. Ni@MoS2 catalyst could also effectively realize the carbonylation of ethanol, n-propanol and n-butanol to their acyl products, which may demonstrate its universal application for alcohols carbonylation.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
边缘硫空位上电荷密度不同的钼镍双位上的醇异相羰基化反应
醇类羰基化在工业中具有重要意义,但放弃使用卤化物添加剂和贵金属仍是一项挑战。在此,我们报告了在 Ni@MoS2 催化剂上实现直接醇异相羰基化到含羰基化学品的过程,尤其是甲醇羰基化,其空间-时间-产量(STY)达到 4.74 molacetyl/kgcat./h,且持久稳定性长达 100 h。机理分析表明,定位于 Ni@MoS2 边缘硫空位的 Mo-Ni 双位点表现出独特的电荷密度,可强烈激活 CH3OH,使其断裂 C-O 键,并以非解离方式激活 CO。密度泛函理论计算进一步表明,Mo-Ni(即 Ni 位点)的低电荷密度可显著降低 CO 迁移和甲氧基亲核攻击的障碍,并最终导致乙酰产物的快速形成。Ni@MoS2 催化剂还能有效地实现乙醇、正丙醇和正丁醇羰基化成其酰基产物,这可能证明了其在醇羰基化方面的普遍应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
26.60
自引率
6.60%
发文量
3549
审稿时长
1.5 months
期刊介绍: Angewandte Chemie, a journal of the German Chemical Society (GDCh), maintains a leading position among scholarly journals in general chemistry with an impressive Impact Factor of 16.6 (2022 Journal Citation Reports, Clarivate, 2023). Published weekly in a reader-friendly format, it features new articles almost every day. Established in 1887, Angewandte Chemie is a prominent chemistry journal, offering a dynamic blend of Review-type articles, Highlights, Communications, and Research Articles on a weekly basis, making it unique in the field.
期刊最新文献
Mechanochemical Thioglycolate Modification of Microscale Zero-Valent Iron for Superior Heavy Metal Removal Homonuclear Super-Resolution NMR Spectroscopy Water-Soluble Aromatic Nanobelt with Unique Cellular Internalization Comprehensive Profiling of Roquin Binding Preferences for RNA Stem-Loops L-Cysteine-Catalysed Hydration of Activated Alkynes
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1