Dual-media laser system: Nitrogen vacancy diamond and red semiconductor laser

IF 11.7 1区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES Science Advances Pub Date : 2024-09-27 DOI:10.1126/sciadv.adj3933
Lukas Lindner, Felix A. Hahl, Tingpeng Luo, Guillermo Nava Antonio, Xavier Vidal, Marcel Rattunde, Takeshi Ohshima, Joachim Sacher, Qiang Sun, Marco Capelli, Brant C. Gibson, Andrew D. Greentree, Rüdiger Quay, Jan Jeske
{"title":"Dual-media laser system: Nitrogen vacancy diamond and red semiconductor laser","authors":"Lukas Lindner,&nbsp;Felix A. Hahl,&nbsp;Tingpeng Luo,&nbsp;Guillermo Nava Antonio,&nbsp;Xavier Vidal,&nbsp;Marcel Rattunde,&nbsp;Takeshi Ohshima,&nbsp;Joachim Sacher,&nbsp;Qiang Sun,&nbsp;Marco Capelli,&nbsp;Brant C. Gibson,&nbsp;Andrew D. Greentree,&nbsp;Rüdiger Quay,&nbsp;Jan Jeske","doi":"10.1126/sciadv.adj3933","DOIUrl":null,"url":null,"abstract":"<div >Diamond is a potential host material for laser applications due to its exceptional thermal properties, ultrawide bandgap, and color centers, which promise gain across the visible spectrum. More recently, coherent laser methods offer improved sensitivity for magnetometry. However, diamond fabrication is difficult in comparison to other crystalline matrices, and many optical loss channels are not yet understood. Here, we demonstrate a continuous-wave laser threshold as a function of the pump intensity on nitrogen-vacancy (NV) color centers. To achieve this, we constructed a laser cavity with both an NV diamond medium and an intracavity antireflection-coated diode laser. This dual-medium approach compensates intrinsic losses of the cavity by providing a fixed additional gain below threshold of the diode laser. We observe a continuous-wave laser threshold of the laser system and linewidth narrowing with increasing green pump power on the NV centers. Our results are a major development toward coherent approaches to magnetometry.</div>","PeriodicalId":21609,"journal":{"name":"Science Advances","volume":null,"pages":null},"PeriodicalIF":11.7000,"publicationDate":"2024-09-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.science.org/doi/reader/10.1126/sciadv.adj3933","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science Advances","FirstCategoryId":"103","ListUrlMain":"https://www.science.org/doi/10.1126/sciadv.adj3933","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Diamond is a potential host material for laser applications due to its exceptional thermal properties, ultrawide bandgap, and color centers, which promise gain across the visible spectrum. More recently, coherent laser methods offer improved sensitivity for magnetometry. However, diamond fabrication is difficult in comparison to other crystalline matrices, and many optical loss channels are not yet understood. Here, we demonstrate a continuous-wave laser threshold as a function of the pump intensity on nitrogen-vacancy (NV) color centers. To achieve this, we constructed a laser cavity with both an NV diamond medium and an intracavity antireflection-coated diode laser. This dual-medium approach compensates intrinsic losses of the cavity by providing a fixed additional gain below threshold of the diode laser. We observe a continuous-wave laser threshold of the laser system and linewidth narrowing with increasing green pump power on the NV centers. Our results are a major development toward coherent approaches to magnetometry.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
双介质激光系统:氮空位金刚石和红色半导体激光器
金刚石具有优异的热性能、超宽带隙和色心,可在整个可见光谱范围内获得增益,因此是一种潜在的激光应用主材料。最近,相干激光方法提高了磁强计的灵敏度。然而,与其他晶体基质相比,金刚石的制造十分困难,而且许多光学损耗通道尚不清楚。在这里,我们展示了连续波激光阈值与氮空位(NV)色心泵浦强度的函数关系。为了实现这一目标,我们构建了一个激光腔,其中既有 NV 钻石介质,又有腔内抗反射涂层二极管激光器。这种双介质方法通过提供低于二极管激光器阈值的固定额外增益来补偿腔体的固有损耗。我们观察到激光系统的连续波激光阈值以及线宽随着 NV 中心绿色泵浦功率的增加而变窄。我们的研究成果是磁强计相干方法的重大进展。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Science Advances
Science Advances 综合性期刊-综合性期刊
CiteScore
21.40
自引率
1.50%
发文量
1937
审稿时长
29 weeks
期刊介绍: Science Advances, an open-access journal by AAAS, publishes impactful research in diverse scientific areas. It aims for fair, fast, and expert peer review, providing freely accessible research to readers. Led by distinguished scientists, the journal supports AAAS's mission by extending Science magazine's capacity to identify and promote significant advances. Evolving digital publishing technologies play a crucial role in advancing AAAS's global mission for science communication and benefitting humankind.
期刊最新文献
A neural circuit for alcohol withdrawal–induced hyperalgesia in a nondependent state Cold-induced degradation of core clock proteins implements temperature compensation in the Arabidopsis circadian clock Endothelial force sensing signals to parenchymal cells to regulate bile and plasma lipids Eliminating performance loss from perovskite films to solar cells Group transfer radical polymerization for the preparation of carbon-chain poly(α-olefins)
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1