Carbonylative Cyclization of 2-Iodofluorobenzenes and 2-Aminophenols with Recyclable Palladium-Complexed Dendrimers on SBA-15: One-Pot Synthesis of Dibenzoxazepinones
{"title":"Carbonylative Cyclization of 2-Iodofluorobenzenes and 2-Aminophenols with Recyclable Palladium-Complexed Dendrimers on SBA-15: One-Pot Synthesis of Dibenzoxazepinones","authors":"Qian Ye, Gang Xie, Wenyan Hao, Mingzhong Cai","doi":"10.1021/acs.joc.4c01640","DOIUrl":null,"url":null,"abstract":"A novel, efficient, and practical route to dibenzoxazepinones has been developed through a one-pot heterogeneous palladium-catalyzed aminocarbonylation/aromatic nucleophilic substitution (S<sub>N</sub>Ar) sequence starting from readily available 2-iodofluorobenzenes and 2-aminophenols. The carbonylative cyclization reaction proceeds smoothly in dimethyl sulfoxide (DMSO) at 120 °C with 1,8-diazabicyclo(5.4.0)undec-7-ene (DBU) as the base by using a polyamidoamine (PAMAM)-dendronized SBA-15-supported bidentate phosphine–palladium complex [G(1)-2P-Pd(OAc)<sub>2</sub>-SBA-15] as the catalyst under 10 bar of CO, yielding a wide variety of dibenzo[<i>b,e</i>][1,4]oxazepin-11(5<i>H</i>)-one derivatives in good to excellent yields. Moreover, this new heterogenized dendritic palladium catalyst has competitive advantages in that it can be facilely recovered by simple filtration in air and recycled more than eight times without any significant loss of activity. The broad substrate scope, high functional group tolerance, and excellent palladium catalyst recyclability of the reaction make this approach a general, efficient, and economical method for the construction of valuable dibenzoxazepinone derivatives.","PeriodicalId":57,"journal":{"name":"The Journal of Organic Chemistry","volume":null,"pages":null},"PeriodicalIF":3.3000,"publicationDate":"2024-09-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Journal of Organic Chemistry","FirstCategoryId":"1","ListUrlMain":"https://doi.org/10.1021/acs.joc.4c01640","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, ORGANIC","Score":null,"Total":0}
引用次数: 0
Abstract
A novel, efficient, and practical route to dibenzoxazepinones has been developed through a one-pot heterogeneous palladium-catalyzed aminocarbonylation/aromatic nucleophilic substitution (SNAr) sequence starting from readily available 2-iodofluorobenzenes and 2-aminophenols. The carbonylative cyclization reaction proceeds smoothly in dimethyl sulfoxide (DMSO) at 120 °C with 1,8-diazabicyclo(5.4.0)undec-7-ene (DBU) as the base by using a polyamidoamine (PAMAM)-dendronized SBA-15-supported bidentate phosphine–palladium complex [G(1)-2P-Pd(OAc)2-SBA-15] as the catalyst under 10 bar of CO, yielding a wide variety of dibenzo[b,e][1,4]oxazepin-11(5H)-one derivatives in good to excellent yields. Moreover, this new heterogenized dendritic palladium catalyst has competitive advantages in that it can be facilely recovered by simple filtration in air and recycled more than eight times without any significant loss of activity. The broad substrate scope, high functional group tolerance, and excellent palladium catalyst recyclability of the reaction make this approach a general, efficient, and economical method for the construction of valuable dibenzoxazepinone derivatives.
期刊介绍:
The Journal of Organic Chemistry welcomes original contributions of fundamental research in all branches of the theory and practice of organic chemistry. In selecting manuscripts for publication, the editors place emphasis on the quality and novelty of the work, as well as the breadth of interest to the organic chemistry community.