Optimizing sequential decision-making under risk: Strategic allocation with switching penalties

IF 6 2区 管理学 Q1 OPERATIONS RESEARCH & MANAGEMENT SCIENCE European Journal of Operational Research Pub Date : 2024-09-20 DOI:10.1016/j.ejor.2024.09.023
Milad Malekipirbazari
{"title":"Optimizing sequential decision-making under risk: Strategic allocation with switching penalties","authors":"Milad Malekipirbazari","doi":"10.1016/j.ejor.2024.09.023","DOIUrl":null,"url":null,"abstract":"<div><div>This paper considers the multiarmed bandit (MAB) problem augmented with a critical real-world consideration: the cost implications of switching decisions. Our work distinguishes itself by addressing the largely unexplored domain of risk-averse MAB problems compounded by switching penalties. Such scenarios are not just theoretical constructs but are reflective of numerous practical applications. Our contribution is threefold: firstly, we explore how switching costs and risk aversion influence decision-making in MAB problems. Secondly, we present novel theoretical results, including the development of the Risk-Averse Switching Index (RASI), which addresses the dual challenges of risk aversion and switching costs, demonstrating its near-optimal efficacy. This heuristic solution method is grounded in dynamic coherent risk measures, enabling a time-consistent evaluation of risk and reward. Lastly, through rigorous numerical experiments, we validate our algorithm’s effectiveness and practical applicability, providing decision-makers with valuable insights and tools for navigating the multifaceted landscape of risk-averse environments with inherent switching costs.</div></div>","PeriodicalId":55161,"journal":{"name":"European Journal of Operational Research","volume":"321 1","pages":"Pages 160-176"},"PeriodicalIF":6.0000,"publicationDate":"2024-09-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Journal of Operational Research","FirstCategoryId":"91","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0377221724007264","RegionNum":2,"RegionCategory":"管理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"OPERATIONS RESEARCH & MANAGEMENT SCIENCE","Score":null,"Total":0}
引用次数: 0

Abstract

This paper considers the multiarmed bandit (MAB) problem augmented with a critical real-world consideration: the cost implications of switching decisions. Our work distinguishes itself by addressing the largely unexplored domain of risk-averse MAB problems compounded by switching penalties. Such scenarios are not just theoretical constructs but are reflective of numerous practical applications. Our contribution is threefold: firstly, we explore how switching costs and risk aversion influence decision-making in MAB problems. Secondly, we present novel theoretical results, including the development of the Risk-Averse Switching Index (RASI), which addresses the dual challenges of risk aversion and switching costs, demonstrating its near-optimal efficacy. This heuristic solution method is grounded in dynamic coherent risk measures, enabling a time-consistent evaluation of risk and reward. Lastly, through rigorous numerical experiments, we validate our algorithm’s effectiveness and practical applicability, providing decision-makers with valuable insights and tools for navigating the multifaceted landscape of risk-averse environments with inherent switching costs.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
优化风险下的顺序决策:带有转换惩罚的战略分配
本文探讨的多臂强盗(MAB)问题增加了一个重要的现实考虑因素:转换决策的成本影响。我们的工作与众不同之处在于,它涉及到了因切换惩罚而变得更加复杂的风险规避 MAB 问题,而这一领域在很大程度上尚未被探索。这种情况不仅仅是理论上的构造,而且反映了大量的实际应用。我们的贡献有三个方面:首先,我们探讨了转换成本和风险规避如何影响 MAB 问题的决策。其次,我们提出了新颖的理论成果,包括开发了风险规避转换指数(RASI),它解决了风险规避和转换成本的双重挑战,并证明了其接近最优的功效。这种启发式求解方法以动态连贯风险度量为基础,能够对风险和回报进行时间一致的评估。最后,通过严格的数值实验,我们验证了算法的有效性和实际应用性,为决策者提供了宝贵的见解和工具,帮助他们在具有固有转换成本的风险规避环境中游刃有余。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
European Journal of Operational Research
European Journal of Operational Research 管理科学-运筹学与管理科学
CiteScore
11.90
自引率
9.40%
发文量
786
审稿时长
8.2 months
期刊介绍: The European Journal of Operational Research (EJOR) publishes high quality, original papers that contribute to the methodology of operational research (OR) and to the practice of decision making.
期刊最新文献
Integration of support vector machines and mean-variance optimization for capital allocation The Yin and Yang of banking: Modeling desirable and undesirable outputs Editorial Board Bi-objective ranking and selection using stochastic kriging Overcoming poor data quality: Optimizing validation of precedence relation data
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1