Integration of support vector machines and mean-variance optimization for capital allocation

IF 6 2区 管理学 Q1 OPERATIONS RESEARCH & MANAGEMENT SCIENCE European Journal of Operational Research Pub Date : 2024-11-20 DOI:10.1016/j.ejor.2024.11.022
David Islip, Roy H. Kwon, Seongmoon Kim
{"title":"Integration of support vector machines and mean-variance optimization for capital allocation","authors":"David Islip, Roy H. Kwon, Seongmoon Kim","doi":"10.1016/j.ejor.2024.11.022","DOIUrl":null,"url":null,"abstract":"This work introduces a novel methodology for portfolio optimization that is the first to integrate support vector machines (SVMs) with cardinality-constrained mean–variance optimization. We propose augmenting cardinality-constrained mean–variance optimization with a preference for portfolios with the property that a low-dimensional hyperplane can separate assets eligible for investment from those ineligible. We present convex mixed-integer quadratic programming models that jointly select a portfolio and a separating hyperplane. This joint selection optimizes a tradeoff between risk-adjusted returns, hyperplane margin, and classification errors made by the hyperplane. The models are amenable to standard commercial branch-and-bound solvers, requiring no custom implementation. We discuss the properties of the proposed optimization models and draw connections between existing portfolio optimization and SVM approaches. We develop a parameter selection strategy to address the selection of big-<mml:math altimg=\"si1.svg\" display=\"inline\"><mml:mi>M</mml:mi></mml:math>s and provide a financial interpretation of the proposed approach’s parameters. The parameter strategy yields valid big-<mml:math altimg=\"si1.svg\" display=\"inline\"><mml:mi>M</mml:mi></mml:math> values, ensures the risk of the resulting portfolio is within a factor of the lowest possible risk, and produces informative hyperplanes for practitioners. The mathematical programming models and the associated parameter selection strategy are amenable to financial backtesting. The models are evaluated in-sample and out-of-sample on two distinct datasets in a rolling horizon backtesting framework. The portfolios resulting from the proposed approach display improved out-of-sample risk-adjusted returns compared to cardinality-constrained mean–variance optimization.","PeriodicalId":55161,"journal":{"name":"European Journal of Operational Research","volume":"13 1","pages":""},"PeriodicalIF":6.0000,"publicationDate":"2024-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Journal of Operational Research","FirstCategoryId":"91","ListUrlMain":"https://doi.org/10.1016/j.ejor.2024.11.022","RegionNum":2,"RegionCategory":"管理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"OPERATIONS RESEARCH & MANAGEMENT SCIENCE","Score":null,"Total":0}
引用次数: 0

Abstract

This work introduces a novel methodology for portfolio optimization that is the first to integrate support vector machines (SVMs) with cardinality-constrained mean–variance optimization. We propose augmenting cardinality-constrained mean–variance optimization with a preference for portfolios with the property that a low-dimensional hyperplane can separate assets eligible for investment from those ineligible. We present convex mixed-integer quadratic programming models that jointly select a portfolio and a separating hyperplane. This joint selection optimizes a tradeoff between risk-adjusted returns, hyperplane margin, and classification errors made by the hyperplane. The models are amenable to standard commercial branch-and-bound solvers, requiring no custom implementation. We discuss the properties of the proposed optimization models and draw connections between existing portfolio optimization and SVM approaches. We develop a parameter selection strategy to address the selection of big-Ms and provide a financial interpretation of the proposed approach’s parameters. The parameter strategy yields valid big-M values, ensures the risk of the resulting portfolio is within a factor of the lowest possible risk, and produces informative hyperplanes for practitioners. The mathematical programming models and the associated parameter selection strategy are amenable to financial backtesting. The models are evaluated in-sample and out-of-sample on two distinct datasets in a rolling horizon backtesting framework. The portfolios resulting from the proposed approach display improved out-of-sample risk-adjusted returns compared to cardinality-constrained mean–variance optimization.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
整合支持向量机和均值-方差优化,促进资本分配
这项研究首次将支持向量机(SVM)与卡方差约束均值方差优化相结合,为投资组合优化引入了一种新方法。我们建议,通过对具有低维超平面可将符合投资条件的资产与不符合投资条件的资产区分开来这一特性的投资组合的偏好,来增强卡方差约束均值方差优化。我们提出了联合选择投资组合和分离超平面的凸混合整数二次编程模型。这种联合选择优化了风险调整收益、超平面边际和超平面分类误差之间的权衡。这些模型适用于标准的商业分支和边界求解器,无需定制实现。我们讨论了所提出的优化模型的特性,并总结了现有投资组合优化和 SVM 方法之间的联系。我们开发了一种参数选择策略来解决 big-Ms 的选择问题,并提供了对所提方法参数的财务解释。该参数策略可生成有效的 big-M 值,确保所生成的投资组合的风险在最低风险的一个因子范围内,并为从业人员生成信息丰富的超平面。数学编程模型和相关的参数选择策略可用于金融回溯测试。在滚动期限回溯测试框架内,对两个不同数据集的样本内和样本外模型进行了评估。与卡方差约束均值-方差优化法相比,建议方法所产生的投资组合显示出更好的样本外风险调整收益。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
European Journal of Operational Research
European Journal of Operational Research 管理科学-运筹学与管理科学
CiteScore
11.90
自引率
9.40%
发文量
786
审稿时长
8.2 months
期刊介绍: The European Journal of Operational Research (EJOR) publishes high quality, original papers that contribute to the methodology of operational research (OR) and to the practice of decision making.
期刊最新文献
Integration of support vector machines and mean-variance optimization for capital allocation The Yin and Yang of banking: Modeling desirable and undesirable outputs Editorial Board Bi-objective ranking and selection using stochastic kriging Overcoming poor data quality: Optimizing validation of precedence relation data
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1