Fluorescence-Detected Two-Dimensional Electronic Spectroscopy of a Single Molecule

IF 9.6 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY Nano Letters Pub Date : 2024-09-27 DOI:10.1021/acs.nanolett.4c03559
Sanchayeeta Jana, Simon Durst, Markus Lippitz
{"title":"Fluorescence-Detected Two-Dimensional Electronic Spectroscopy of a Single Molecule","authors":"Sanchayeeta Jana, Simon Durst, Markus Lippitz","doi":"10.1021/acs.nanolett.4c03559","DOIUrl":null,"url":null,"abstract":"Single-molecule fluorescence spectroscopy is a powerful method that avoids ensemble averaging, but its temporal resolution is limited by the fluorescence lifetime to nanoseconds at most. At the ensemble level, two-dimensional spectroscopy provides insight into ultrafast femtosecond processes, such as energy transfer and line broadening, even beyond the Fourier limit, by correlating pump and probe spectra. Here, we combine these two techniques and demonstrate coherent 2D spectroscopy of individual dibenzoterrylene (DBT) molecules at room temperature. We excite the molecule in a confocal microscope with a phase-modulated train of femtosecond pulses and detect the emitted fluorescence with single-photon counting detectors. Using a phase-sensitive detection scheme, we were able to measure the nonlinear 2D spectra of most of the DBT molecules that we studied. Our method is applicable to a wide range of single emitters and opens new avenues for understanding energy transfer in single quantum objects on ultrafast time scales.","PeriodicalId":53,"journal":{"name":"Nano Letters","volume":null,"pages":null},"PeriodicalIF":9.6000,"publicationDate":"2024-09-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nano Letters","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1021/acs.nanolett.4c03559","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Single-molecule fluorescence spectroscopy is a powerful method that avoids ensemble averaging, but its temporal resolution is limited by the fluorescence lifetime to nanoseconds at most. At the ensemble level, two-dimensional spectroscopy provides insight into ultrafast femtosecond processes, such as energy transfer and line broadening, even beyond the Fourier limit, by correlating pump and probe spectra. Here, we combine these two techniques and demonstrate coherent 2D spectroscopy of individual dibenzoterrylene (DBT) molecules at room temperature. We excite the molecule in a confocal microscope with a phase-modulated train of femtosecond pulses and detect the emitted fluorescence with single-photon counting detectors. Using a phase-sensitive detection scheme, we were able to measure the nonlinear 2D spectra of most of the DBT molecules that we studied. Our method is applicable to a wide range of single emitters and opens new avenues for understanding energy transfer in single quantum objects on ultrafast time scales.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
单分子的荧光检测二维电子能谱学
单分子荧光光谱学是一种避免集合平均的强大方法,但其时间分辨率受到荧光寿命的限制,最多只能达到纳秒级。在集合水平上,二维光谱法通过关联泵浦和探针光谱,可以深入了解能量转移和线展宽等超快飞秒过程,甚至超越傅里叶极限。在这里,我们将这两种技术相结合,展示了室温下单个二苯并三甲苯(DBT)分子的相干二维光谱。我们在共聚焦显微镜中用一串相位调制飞秒脉冲激发分子,并用单光子计数探测器探测发射的荧光。利用相位敏感检测方案,我们能够测量我们研究的大多数 DBT 分子的非线性二维光谱。我们的方法适用于多种单发射体,为了解单量子物体在超快时间尺度上的能量转移开辟了新途径。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Nano Letters
Nano Letters 工程技术-材料科学:综合
CiteScore
16.80
自引率
2.80%
发文量
1182
审稿时长
1.4 months
期刊介绍: Nano Letters serves as a dynamic platform for promptly disseminating original results in fundamental, applied, and emerging research across all facets of nanoscience and nanotechnology. A pivotal criterion for inclusion within Nano Letters is the convergence of at least two different areas or disciplines, ensuring a rich interdisciplinary scope. The journal is dedicated to fostering exploration in diverse areas, including: - Experimental and theoretical findings on physical, chemical, and biological phenomena at the nanoscale - Synthesis, characterization, and processing of organic, inorganic, polymer, and hybrid nanomaterials through physical, chemical, and biological methodologies - Modeling and simulation of synthetic, assembly, and interaction processes - Realization of integrated nanostructures and nano-engineered devices exhibiting advanced performance - Applications of nanoscale materials in living and environmental systems Nano Letters is committed to advancing and showcasing groundbreaking research that intersects various domains, fostering innovation and collaboration in the ever-evolving field of nanoscience and nanotechnology.
期刊最新文献
Band-Edge Mixture Engineered Giant and Switchable Shift Current Generation Quantum Rectification Based on Room Temperature Multidirectional Nonlinearity in Bi2Te3 Surface Coloring and Plasmonic Information Encryption at 50000 dpi Enabled by Direct Femtosecond Laser Printing Ultracompact and Uniform Nanoemitter Array Based on Periodic Scattering Spatially Separate Center-to-Surround Radiation Structure Induced Tandem Electron Transfer Effect for Stable and Enhanced Photocatalysis
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1