Sanghyo Park , Milica Notaros , Aseema Mohanty , Donggyu Kim , Jelena Notaros , Sara Mouradian
{"title":"Technologies for modulation of visible light and their applications","authors":"Sanghyo Park , Milica Notaros , Aseema Mohanty , Donggyu Kim , Jelena Notaros , Sara Mouradian","doi":"10.1016/j.pquantelec.2024.100534","DOIUrl":null,"url":null,"abstract":"<div><div>Control over the amplitude, phase, and spatial distribution of visible-spectrum light underlies many technologies, but commercial solutions remain bulky, require high control power, and are often too slow. Active integrated photonics for visible light promises a solution, especially with recent materials and fabrication advances. In this review, we discuss three growing application spaces which rely on control of visible light: control and measurement of atomic quantum technologies, augmented-reality displays, and measurement and control of biological systems. We then review the commercial dynamic surfaces and bulk systems which currently provide visible-light modulation and the current state-of-the-art integrated solutions. Throughout the review we focus on speed, control power, size, optical bandwidth, and technological maturity when comparing technologies.</div></div>","PeriodicalId":414,"journal":{"name":"Progress in Quantum Electronics","volume":"97 ","pages":"Article 100534"},"PeriodicalIF":7.4000,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Progress in Quantum Electronics","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0079672724000375","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
Control over the amplitude, phase, and spatial distribution of visible-spectrum light underlies many technologies, but commercial solutions remain bulky, require high control power, and are often too slow. Active integrated photonics for visible light promises a solution, especially with recent materials and fabrication advances. In this review, we discuss three growing application spaces which rely on control of visible light: control and measurement of atomic quantum technologies, augmented-reality displays, and measurement and control of biological systems. We then review the commercial dynamic surfaces and bulk systems which currently provide visible-light modulation and the current state-of-the-art integrated solutions. Throughout the review we focus on speed, control power, size, optical bandwidth, and technological maturity when comparing technologies.
期刊介绍:
Progress in Quantum Electronics, established in 1969, is an esteemed international review journal dedicated to sharing cutting-edge topics in quantum electronics and its applications. The journal disseminates papers covering theoretical and experimental aspects of contemporary research, including advances in physics, technology, and engineering relevant to quantum electronics. It also encourages interdisciplinary research, welcoming papers that contribute new knowledge in areas such as bio and nano-related work.