Mining of dynamic traffic-meteorology-atmospheric pollutant association rules based on Eclat method

IF 3.9 3区 环境科学与生态学 Q2 ENVIRONMENTAL SCIENCES Atmospheric Pollution Research Pub Date : 2024-09-19 DOI:10.1016/j.apr.2024.102305
Yonghong Liu, Xinru Yang, Kui Liu, Rui Xu, Yuzhuang Pian, Shikun Liu
{"title":"Mining of dynamic traffic-meteorology-atmospheric pollutant association rules based on Eclat method","authors":"Yonghong Liu,&nbsp;Xinru Yang,&nbsp;Kui Liu,&nbsp;Rui Xu,&nbsp;Yuzhuang Pian,&nbsp;Shikun Liu","doi":"10.1016/j.apr.2024.102305","DOIUrl":null,"url":null,"abstract":"<div><div>With the rapid increase of urban vehicles, the atmospheric compound pollutants, notably PM<span><math><msub><mrow></mrow><mrow><mn>2</mn><mo>.</mo><mn>5</mn></mrow></msub></math></span> and O<span><math><msub><mrow></mrow><mrow><mn>3</mn></mrow></msub></math></span>, have significantly increased and seriously affected public health. Traffic and meteorological conditions are the primary influencing factors of pollutant concentrations, and their spatial and temporal changes affect the dispersion of pollutants. Increasing use of high-resolution big data offers opportunities to explore these correlations. More extensive quantitative studies are essential for effective air pollution control. This study presents an Eclat algorithm to quantitatively reveal the relationship between traffic, meteorology and pollutants with hourly and 5-minute scale data in the urban area of Guangzhou. We establish a research framework covering temporal pollution analysis, multifactor rule mining, and spatial effects. The results show that <span><math><mrow><mi>P</mi><msub><mrow><mi>M</mi></mrow><mrow><mn>2</mn><mo>.</mo><mn>5</mn></mrow></msub></mrow></math></span> and O<span><math><msub><mrow></mrow><mrow><mn>3</mn></mrow></msub></math></span> exhibit coordinated trends on the daily scale influenced by traffic flow and meteorology conditions, but on the hourly scale, they are negatively correlated. At the 5-minute scale, synchronized variations occur only during specific periods. This finer scale better identifies association rules for high-concentration pollutant scenarios, and non-roadside sites outperform roadside sites in mining these associations. For example, when humidity is below 37%, atmospheric pressure is 1016.2–1020.3 Pa, wind speed is 1.7–2.6 m/s, and the traffic volume on Jiefang North Road exceeds 635 vehicles every 5 min, there is a 92.86% probability that the <span><math><mrow><mi>P</mi><msub><mrow><mi>M</mi></mrow><mrow><mn>2</mn><mo>.</mo><mn>5</mn></mrow></msub></mrow></math></span> concentration at GYQ (a non-roadside monitoring site) will exceed 127 <span><math><mi>μ</mi></math></span>g/m<span><math><msup><mrow></mrow><mrow><mn>3</mn></mrow></msup></math></span>. These findings enhance our understanding of how dynamic traffic and meteorological conditions impact atmospheric pollutants and provide a scientific basis for regional collaborative pollution prevention.</div></div>","PeriodicalId":8604,"journal":{"name":"Atmospheric Pollution Research","volume":"15 12","pages":"Article 102305"},"PeriodicalIF":3.9000,"publicationDate":"2024-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Atmospheric Pollution Research","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1309104224002708","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

With the rapid increase of urban vehicles, the atmospheric compound pollutants, notably PM2.5 and O3, have significantly increased and seriously affected public health. Traffic and meteorological conditions are the primary influencing factors of pollutant concentrations, and their spatial and temporal changes affect the dispersion of pollutants. Increasing use of high-resolution big data offers opportunities to explore these correlations. More extensive quantitative studies are essential for effective air pollution control. This study presents an Eclat algorithm to quantitatively reveal the relationship between traffic, meteorology and pollutants with hourly and 5-minute scale data in the urban area of Guangzhou. We establish a research framework covering temporal pollution analysis, multifactor rule mining, and spatial effects. The results show that PM2.5 and O3 exhibit coordinated trends on the daily scale influenced by traffic flow and meteorology conditions, but on the hourly scale, they are negatively correlated. At the 5-minute scale, synchronized variations occur only during specific periods. This finer scale better identifies association rules for high-concentration pollutant scenarios, and non-roadside sites outperform roadside sites in mining these associations. For example, when humidity is below 37%, atmospheric pressure is 1016.2–1020.3 Pa, wind speed is 1.7–2.6 m/s, and the traffic volume on Jiefang North Road exceeds 635 vehicles every 5 min, there is a 92.86% probability that the PM2.5 concentration at GYQ (a non-roadside monitoring site) will exceed 127 μg/m3. These findings enhance our understanding of how dynamic traffic and meteorological conditions impact atmospheric pollutants and provide a scientific basis for regional collaborative pollution prevention.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于 Eclat 方法的动态交通-气象-大气污染物关联规则挖掘
随着城市车辆的迅速增加,大气复合污染物,特别是 PM2.5 和 O3 显著增加,严重影响了公众健康。交通和气象条件是污染物浓度的主要影响因素,它们的时空变化影响着污染物的扩散。越来越多地使用高分辨率大数据为探索这些相关性提供了机会。更广泛的定量研究对于有效控制空气污染至关重要。本研究提出了一种 Eclat 算法,利用广州城区每小时和 5 分钟尺度的数据,定量揭示交通、气象和污染物之间的关系。我们建立了一个涵盖时空污染分析、多因素规则挖掘和空间效应的研究框架。结果表明,受交通流量和气象条件的影响,PM2.5 和 O3 在日尺度上呈现出协调的变化趋势,但在小时尺度上,两者呈负相关。在 5 分钟尺度上,只有在特定时段才会出现同步变化。这种更精细的尺度能更好地识别高浓度污染物情景的关联规则,非路边站点在挖掘这些关联方面优于路边站点。例如,当湿度低于 37%、气压为 1016.2-1020.3 Pa、风速为 1.7-2.6 m/s、解放北路每 5 分钟车流量超过 635 辆车时,GYQ(非路边监测点)PM2.5 浓度超过 127 μg/m3 的概率为 92.86%。这些发现加深了我们对动态交通和气象条件如何影响大气污染物的理解,为区域协同污染防治提供了科学依据。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Atmospheric Pollution Research
Atmospheric Pollution Research ENVIRONMENTAL SCIENCES-
CiteScore
8.30
自引率
6.70%
发文量
256
审稿时长
36 days
期刊介绍: Atmospheric Pollution Research (APR) is an international journal designed for the publication of articles on air pollution. Papers should present novel experimental results, theory and modeling of air pollution on local, regional, or global scales. Areas covered are research on inorganic, organic, and persistent organic air pollutants, air quality monitoring, air quality management, atmospheric dispersion and transport, air-surface (soil, water, and vegetation) exchange of pollutants, dry and wet deposition, indoor air quality, exposure assessment, health effects, satellite measurements, natural emissions, atmospheric chemistry, greenhouse gases, and effects on climate change.
期刊最新文献
Editorial Board Concurrent measurements of atmospheric Hg in outdoor and indoor at a megacity in Southeast Asia: First insights from the region Investigating the role of photochemistry and impact of regional and local contributions on gaseous pollutant concentrations (NO, NO2, O3, CO, and SO2) at urban and suburban sites Sensitivity of AERMOD (V21112) RLINEXT dispersion model outputs by source type to variability in single noise barrier height and separation distance Carbonaceous aerosol emissions from secondary lighting sources: Emission factors and optical properties
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1