Prediction of temperature and structural properties of fibre-reinforced polymer laminates under simulated fire exposure using artificial neural networks

IF 12.7 1区 材料科学 Q1 ENGINEERING, MULTIDISCIPLINARY Composites Part B: Engineering Pub Date : 2024-09-21 DOI:10.1016/j.compositesb.2024.111858
Thomas W. Loh, Hoang T. Nguyen, Kate T.Q. Nguyen
{"title":"Prediction of temperature and structural properties of fibre-reinforced polymer laminates under simulated fire exposure using artificial neural networks","authors":"Thomas W. Loh,&nbsp;Hoang T. Nguyen,&nbsp;Kate T.Q. Nguyen","doi":"10.1016/j.compositesb.2024.111858","DOIUrl":null,"url":null,"abstract":"<div><div>Load-bearing fibre reinforced polymer laminates soften and decompose when exposed to high temperature fire which may cause significant deformation and weakening, ultimately leading to failure. A combined experimental and modelling study is presented to predict the fire structural survivability of laminates using artificial neural networks based on machine learning. Multiple experimental fire-under-tension load tests are performed under identical conditions to determine the average values and scatter to the surface temperatures, deformation rates and rupture times for an E-glass/vinyl ester laminate. A data-driven modelling strategy based on artificial neural networks is presented that can predict the temperatures and fire structural properties for the laminate when subject to combined fire exposure and tension loading. It is shown that the model gives excellent agreement to the measured surface temperatures, deformations, and time-to-failure of the laminate when exposed to one-sided heating at a constant heat flux. It is envisioned that the ANN based model could be used to assess the fire structural survivability of load-bearing composite structures exposed to fire.</div></div>","PeriodicalId":10660,"journal":{"name":"Composites Part B: Engineering","volume":"287 ","pages":"Article 111858"},"PeriodicalIF":12.7000,"publicationDate":"2024-09-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Composites Part B: Engineering","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S135983682400670X","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Load-bearing fibre reinforced polymer laminates soften and decompose when exposed to high temperature fire which may cause significant deformation and weakening, ultimately leading to failure. A combined experimental and modelling study is presented to predict the fire structural survivability of laminates using artificial neural networks based on machine learning. Multiple experimental fire-under-tension load tests are performed under identical conditions to determine the average values and scatter to the surface temperatures, deformation rates and rupture times for an E-glass/vinyl ester laminate. A data-driven modelling strategy based on artificial neural networks is presented that can predict the temperatures and fire structural properties for the laminate when subject to combined fire exposure and tension loading. It is shown that the model gives excellent agreement to the measured surface temperatures, deformations, and time-to-failure of the laminate when exposed to one-sided heating at a constant heat flux. It is envisioned that the ANN based model could be used to assess the fire structural survivability of load-bearing composite structures exposed to fire.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用人工神经网络预测模拟火灾暴露下纤维增强聚合物层压板的温度和结构特性
承重纤维增强聚合物层压板在暴露于高温火灾时会软化和分解,从而导致明显的变形和削弱,最终导致失效。本文介绍了一项实验与建模相结合的研究,利用基于机器学习的人工神经网络来预测层压板的火灾结构存活能力。在完全相同的条件下进行了多次拉伸荷载试验,以确定 E 玻璃/乙烯基酯层压板的表面温度、变形率和断裂时间的平均值和散点。介绍了一种基于人工神经网络的数据驱动建模策略,该策略可以预测层压板在火灾暴露和拉伸荷载作用下的温度和防火结构特性。结果表明,该模型与在恒定热通量下单面加热时测量到的层压板表面温度、变形和失效时间非常吻合。预计基于 ANN 的模型可用于评估承重复合材料结构在火灾中的生存能力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Composites Part B: Engineering
Composites Part B: Engineering 工程技术-材料科学:复合
CiteScore
24.40
自引率
11.50%
发文量
784
审稿时长
21 days
期刊介绍: Composites Part B: Engineering is a journal that publishes impactful research of high quality on composite materials. This research is supported by fundamental mechanics and materials science and engineering approaches. The targeted research can cover a wide range of length scales, ranging from nano to micro and meso, and even to the full product and structure level. The journal specifically focuses on engineering applications that involve high performance composites. These applications can range from low volume and high cost to high volume and low cost composite development. The main goal of the journal is to provide a platform for the prompt publication of original and high quality research. The emphasis is on design, development, modeling, validation, and manufacturing of engineering details and concepts. The journal welcomes both basic research papers and proposals for review articles. Authors are encouraged to address challenges across various application areas. These areas include, but are not limited to, aerospace, automotive, and other surface transportation. The journal also covers energy-related applications, with a focus on renewable energy. Other application areas include infrastructure, off-shore and maritime projects, health care technology, and recreational products.
期刊最新文献
Spider web-inspired sericin/polyacrylamide composite hydrogel with super-low hysteresis for monitoring penalty of sports competition Engineered dECM-based microsystem promotes cartilage regeneration in osteoarthritis by synergistically enhancing chondrogenesis of BMSCs and anti-inflammatory effect On demand thermal surface modification of carbon fiber for improved interfacial shear strength Personalized customization of in-plane thermal conductive networks by a novel electrospinning method Microchannels-enabled vertical alignment of hexagonal boron nitride in silicone rubber composites to achieve high through-plane thermal conductivity
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1