Andreas M. Brandmaier , Ulman Lindenberger , Ethan M. McCormick
{"title":"Optimal two-time point longitudinal models for estimating individual-level change: Asymptotic insights and practical implications","authors":"Andreas M. Brandmaier , Ulman Lindenberger , Ethan M. McCormick","doi":"10.1016/j.dcn.2024.101450","DOIUrl":null,"url":null,"abstract":"<div><div>Based on findings from a simulation study, Parsons and McCormick (2024) argued that growth models with exactly two time points are poorly-suited to model individual differences in linear slopes in developmental studies. Their argument is based on an empirical investigation of the increase in precision to measure individual differences in linear slopes if studies are progressively extended by adding an extra measurement occasion after one unit of time (e.g., year) has passed. They concluded that two-time point models are inadequate to reliably model change at the individual level and that these models should focus on group-level effects. Here, we show that these limitations can be addressed by deconfounding the influence of study duration and the influence of adding an extra measurement occasion on precision to estimate individual differences in linear slopes. We use asymptotic results to gauge and compare precision of linear change models representing different study designs, and show that it is primarily the longer time span that increases precision, not the extra waves. Further, we show how the asymptotic results can be used to also consider irregularly spaced intervals as well as planned and unplanned missing data. In conclusion, we like to stress that true linear change can indeed be captured well with only two time points if careful study design planning is applied before running a study.</div></div>","PeriodicalId":49083,"journal":{"name":"Developmental Cognitive Neuroscience","volume":"70 ","pages":"Article 101450"},"PeriodicalIF":4.6000,"publicationDate":"2024-09-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Developmental Cognitive Neuroscience","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1878929324001117","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Based on findings from a simulation study, Parsons and McCormick (2024) argued that growth models with exactly two time points are poorly-suited to model individual differences in linear slopes in developmental studies. Their argument is based on an empirical investigation of the increase in precision to measure individual differences in linear slopes if studies are progressively extended by adding an extra measurement occasion after one unit of time (e.g., year) has passed. They concluded that two-time point models are inadequate to reliably model change at the individual level and that these models should focus on group-level effects. Here, we show that these limitations can be addressed by deconfounding the influence of study duration and the influence of adding an extra measurement occasion on precision to estimate individual differences in linear slopes. We use asymptotic results to gauge and compare precision of linear change models representing different study designs, and show that it is primarily the longer time span that increases precision, not the extra waves. Further, we show how the asymptotic results can be used to also consider irregularly spaced intervals as well as planned and unplanned missing data. In conclusion, we like to stress that true linear change can indeed be captured well with only two time points if careful study design planning is applied before running a study.
期刊介绍:
The journal publishes theoretical and research papers on cognitive brain development, from infancy through childhood and adolescence and into adulthood. It covers neurocognitive development and neurocognitive processing in both typical and atypical development, including social and affective aspects. Appropriate methodologies for the journal include, but are not limited to, functional neuroimaging (fMRI and MEG), electrophysiology (EEG and ERP), NIRS and transcranial magnetic stimulation, as well as other basic neuroscience approaches using cellular and animal models that directly address cognitive brain development, patient studies, case studies, post-mortem studies and pharmacological studies.