{"title":"Radiative signatures of circumplanetary disks and envelopes during the late stages of giant planet formation","authors":"Aster G. Taylor , Fred C. Adams","doi":"10.1016/j.icarus.2024.116327","DOIUrl":null,"url":null,"abstract":"<div><div>During the late stages of giant planet formation, protoplanets are surrounded by a circumplanetary disk and an infalling envelope of gas and dust. For systems with sufficient cooling, material entering the sphere of influence of the planet falls inward and approaches ballistic conditions. Due to conservation of angular momentum, most of the incoming material falls onto the disk rather than directly onto the planet. This paper determines the spectral energy distributions of forming planets in this stage of evolution. Generalizing previous work, we consider a range of possible geometries for the boundary conditions of the infall and determine the two-dimensional structure of the envelope, as well as the surface density of the disk. After specifying the luminosity sources for the planet and disk, we calculate the corresponding radiative signatures for the system, including the emergent spectral energy distributions and emission maps. These results show how the observational appearance of forming planets depend on the input parameters, including the instantaneous mass, mass accretion rate, semimajor axis of the orbit, and the planetary magnetic field strength (which sets the inner boundary condition for the disk). We also consider different choices for the form of the opacity law and attenuation due to the background circumstellar disk. Although observing forming planets will be challenging, these results show how the observational signatures depend on the underlying properties of the planet/disk/envelope system.</div></div>","PeriodicalId":13199,"journal":{"name":"Icarus","volume":"425 ","pages":"Article 116327"},"PeriodicalIF":2.5000,"publicationDate":"2024-09-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Icarus","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0019103524003877","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
引用次数: 0
Abstract
During the late stages of giant planet formation, protoplanets are surrounded by a circumplanetary disk and an infalling envelope of gas and dust. For systems with sufficient cooling, material entering the sphere of influence of the planet falls inward and approaches ballistic conditions. Due to conservation of angular momentum, most of the incoming material falls onto the disk rather than directly onto the planet. This paper determines the spectral energy distributions of forming planets in this stage of evolution. Generalizing previous work, we consider a range of possible geometries for the boundary conditions of the infall and determine the two-dimensional structure of the envelope, as well as the surface density of the disk. After specifying the luminosity sources for the planet and disk, we calculate the corresponding radiative signatures for the system, including the emergent spectral energy distributions and emission maps. These results show how the observational appearance of forming planets depend on the input parameters, including the instantaneous mass, mass accretion rate, semimajor axis of the orbit, and the planetary magnetic field strength (which sets the inner boundary condition for the disk). We also consider different choices for the form of the opacity law and attenuation due to the background circumstellar disk. Although observing forming planets will be challenging, these results show how the observational signatures depend on the underlying properties of the planet/disk/envelope system.
期刊介绍:
Icarus is devoted to the publication of original contributions in the field of Solar System studies. Manuscripts reporting the results of new research - observational, experimental, or theoretical - concerning the astronomy, geology, meteorology, physics, chemistry, biology, and other scientific aspects of our Solar System or extrasolar systems are welcome. The journal generally does not publish papers devoted exclusively to the Sun, the Earth, celestial mechanics, meteoritics, or astrophysics. Icarus does not publish papers that provide "improved" versions of Bode''s law, or other numerical relations, without a sound physical basis. Icarus does not publish meeting announcements or general notices. Reviews, historical papers, and manuscripts describing spacecraft instrumentation may be considered, but only with prior approval of the editor. An entire issue of the journal is occasionally devoted to a single subject, usually arising from a conference on the same topic. The language of publication is English. American or British usage is accepted, but not a mixture of these.