A note on the direction of core solidification in asteroids, the iron melting curve, and phase equilibria parameterizations

IF 2.5 2区 物理与天体物理 Q2 ASTRONOMY & ASTROPHYSICS Icarus Pub Date : 2024-11-20 DOI:10.1016/j.icarus.2024.116381
Q. Williams
{"title":"A note on the direction of core solidification in asteroids, the iron melting curve, and phase equilibria parameterizations","authors":"Q. Williams","doi":"10.1016/j.icarus.2024.116381","DOIUrl":null,"url":null,"abstract":"<div><div>The accuracy of the pressure/temperature/composition parameterization of Buono and Walker (2011) to describe the liquidus of iron and the Fe-FeS system is examined. In the pressure range critical for asteroidal core crystallization (0- ∼2 GPa), the model predicts a shape for the iron melting curve (initially negatively sloped, and turning over near 0.7 GPa) that is inconsistent with previous experimental observations, thermodynamic constraints, and millennia of empirical metallurgical observations. Dodds et al. (2025) recently used this model to derive notable conclusions about the behavior of the solidifying cores of asteroids: the robustness of their conclusions is assessed. Two basic caveat emptor guidelines for employing parameterizations of phase equilibria data are suggested: (1) ensure that the model's fit is consistent with simple thermodynamic expectations; and (2) verify that the data used to formulate the model provide adequate coverage in the region of interest.</div></div>","PeriodicalId":13199,"journal":{"name":"Icarus","volume":"427 ","pages":"Article 116381"},"PeriodicalIF":2.5000,"publicationDate":"2024-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Icarus","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S001910352400441X","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
引用次数: 0

Abstract

The accuracy of the pressure/temperature/composition parameterization of Buono and Walker (2011) to describe the liquidus of iron and the Fe-FeS system is examined. In the pressure range critical for asteroidal core crystallization (0- ∼2 GPa), the model predicts a shape for the iron melting curve (initially negatively sloped, and turning over near 0.7 GPa) that is inconsistent with previous experimental observations, thermodynamic constraints, and millennia of empirical metallurgical observations. Dodds et al. (2025) recently used this model to derive notable conclusions about the behavior of the solidifying cores of asteroids: the robustness of their conclusions is assessed. Two basic caveat emptor guidelines for employing parameterizations of phase equilibria data are suggested: (1) ensure that the model's fit is consistent with simple thermodynamic expectations; and (2) verify that the data used to formulate the model provide adequate coverage in the region of interest.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
关于小行星内核凝固方向、铁熔化曲线和相平衡参数化的说明
研究了 Buono 和 Walker(2011 年)的压力/温度/成分参数化描述铁的液相和 Fe-FeS 系统的准确性。在小行星内核结晶的关键压力范围(0-∼2 GPa)内,该模型预测的铁熔化曲线形状(最初为负倾斜,在 0.7 GPa 附近转折)与之前的实验观测、热力学约束和数千年的经验冶金观测不一致。Dodds 等人(2025 年)最近利用这一模型得出了关于小行星凝固内核行为的重要结论:对其结论的稳健性进行了评估。提出了采用相平衡数据参数化的两个基本注意事项:(1) 确保模型的拟合与简单的热力学预期相一致;(2) 验证用于建立模型的数据是否充分覆盖了感兴趣的区域。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Icarus
Icarus 地学天文-天文与天体物理
CiteScore
6.30
自引率
18.80%
发文量
356
审稿时长
2-4 weeks
期刊介绍: Icarus is devoted to the publication of original contributions in the field of Solar System studies. Manuscripts reporting the results of new research - observational, experimental, or theoretical - concerning the astronomy, geology, meteorology, physics, chemistry, biology, and other scientific aspects of our Solar System or extrasolar systems are welcome. The journal generally does not publish papers devoted exclusively to the Sun, the Earth, celestial mechanics, meteoritics, or astrophysics. Icarus does not publish papers that provide "improved" versions of Bode''s law, or other numerical relations, without a sound physical basis. Icarus does not publish meeting announcements or general notices. Reviews, historical papers, and manuscripts describing spacecraft instrumentation may be considered, but only with prior approval of the editor. An entire issue of the journal is occasionally devoted to a single subject, usually arising from a conference on the same topic. The language of publication is English. American or British usage is accepted, but not a mixture of these.
期刊最新文献
Quasi-Biennial Oscillation absent in Mars atmospheric reanalysis datasets A note on the direction of core solidification in asteroids, the iron melting curve, and phase equilibria parameterizations Lifetime, size and emission of laser-induced plasmas for in-situ laser-induced breakdown spectroscopy on Earth, Mars and Moon Growth of amorphous ice grains by sintering in a protoplanetary disk The extent of formation of organic molecules in the comae of comets showing relatively high activity
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1