Carbon capture and sequestration with in-situ CO2 and steam integrated 3D concrete printing

Sean Gip Lim , Yi Wei Daniel Tay , Suvash Chandra Paul , Junghyun Lee , Issam T. Amr , Bandar A. Fadhel , Aqil Jamal , Ahmad O. Al-Khowaiter , Ming Jen Tan
{"title":"Carbon capture and sequestration with in-situ CO2 and steam integrated 3D concrete printing","authors":"Sean Gip Lim ,&nbsp;Yi Wei Daniel Tay ,&nbsp;Suvash Chandra Paul ,&nbsp;Junghyun Lee ,&nbsp;Issam T. Amr ,&nbsp;Bandar A. Fadhel ,&nbsp;Aqil Jamal ,&nbsp;Ahmad O. Al-Khowaiter ,&nbsp;Ming Jen Tan","doi":"10.1016/j.ccst.2024.100306","DOIUrl":null,"url":null,"abstract":"<div><div>Profound reliance of the building and construction sector on cement exacerbates its immense carbon footprint, accounting for a substantial portion of worldwide emissions. In this paper, we investigate the possibilities of in-situ carbon capture and sequestration to eliminate spatial constraints from a chamber confined curing solution via CO<sub>2</sub> and steam integrated 3D concrete printing. The presented technology involves a two-step extrusion-based system that sequesters captured CO<sub>2</sub> directly into concrete prior deposition at the nozzle printhead, so as to achieve artificially accelerated carbonation reactions with enhancement of mechanical properties. Accordingly, samples subjected to in-situ CO<sub>2</sub> and steam integration showed increases of up to 50.0 % 3D printability, 36.8 % compressive strength, and 45.3 % flexural strength compared to control at its respective curing conditions. The results of said approach demonstrated 38.2 % increase in bulk carbon uptake compared to accelerated carbonation confined curing methods, offering an alternative pathway towards decarbonized construction with 3DCP.</div></div>","PeriodicalId":9387,"journal":{"name":"Carbon Capture Science & Technology","volume":"13 ","pages":"Article 100306"},"PeriodicalIF":0.0000,"publicationDate":"2024-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Carbon Capture Science & Technology","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2772656824001180","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Profound reliance of the building and construction sector on cement exacerbates its immense carbon footprint, accounting for a substantial portion of worldwide emissions. In this paper, we investigate the possibilities of in-situ carbon capture and sequestration to eliminate spatial constraints from a chamber confined curing solution via CO2 and steam integrated 3D concrete printing. The presented technology involves a two-step extrusion-based system that sequesters captured CO2 directly into concrete prior deposition at the nozzle printhead, so as to achieve artificially accelerated carbonation reactions with enhancement of mechanical properties. Accordingly, samples subjected to in-situ CO2 and steam integration showed increases of up to 50.0 % 3D printability, 36.8 % compressive strength, and 45.3 % flexural strength compared to control at its respective curing conditions. The results of said approach demonstrated 38.2 % increase in bulk carbon uptake compared to accelerated carbonation confined curing methods, offering an alternative pathway towards decarbonized construction with 3DCP.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用原位二氧化碳和蒸汽集成 3D 混凝土打印技术进行碳捕集与封存
建筑行业对水泥的严重依赖加剧了其巨大的碳足迹,占全球排放量的很大一部分。在本文中,我们研究了原位碳捕集与封存的可能性,以通过二氧化碳和蒸汽一体化三维混凝土打印技术消除密室养护解决方案的空间限制。所介绍的技术包括一个基于挤压的两步系统,在喷嘴打印头沉积之前将捕获的二氧化碳直接封存到混凝土中,从而实现人工加速碳化反应并提高力学性能。因此,在各自的养护条件下,与对照组相比,经过原位二氧化碳和蒸汽整合的样品的三维打印性能提高了 50.0%,抗压强度提高了 36.8%,抗折强度提高了 45.3%。与加速碳化密闭固化方法相比,上述方法的结果表明体积碳吸收率提高了 38.2%,为利用 3DCP 实现建筑脱碳提供了另一条途径。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
How do CaO/CuO materials evolve in integrated calcium and chemical looping cycles? Recent advances and challenges in solid sorbents for CO2 capture Towards net-zero in steel production: Process simulation and environmental impacts of carbon capture, storage and utilisation of blast furnace gas Developing non-aqueous slurry for CO2 capture CO2 capture performance and foaming mechanism of modified amine-based absorbents: A study based on molecular dynamics
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1