The suitability of two-dimensional Dirac materials ZrSiSe and ZrSiS as potential anode materials for lithium-ion batteries: First-principles study

IF 3.1 3区 材料科学 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY Computational Materials Science Pub Date : 2024-09-28 DOI:10.1016/j.commatsci.2024.113397
Tinghai Yang , Rengui Xiao , Xiang Ke , Fenglian Lu , Hongmei Sun , Keliang Wang
{"title":"The suitability of two-dimensional Dirac materials ZrSiSe and ZrSiS as potential anode materials for lithium-ion batteries: First-principles study","authors":"Tinghai Yang ,&nbsp;Rengui Xiao ,&nbsp;Xiang Ke ,&nbsp;Fenglian Lu ,&nbsp;Hongmei Sun ,&nbsp;Keliang Wang","doi":"10.1016/j.commatsci.2024.113397","DOIUrl":null,"url":null,"abstract":"<div><div>The development of high-performance, high-capacity, and excellent conductivity anode materials is crucial for the advancement of lithium-ion batteries. In this study, we systematically assessed the potential of two-dimensional ZrSiSe and ZrSiS monolayers as anode materials for lithium-ion batteries using first-principles calculations. The results show that ZrSiSe and ZrSiS not only exhibit excellent conductivity and dynamic, thermodynamic stability but also possess a strong lithium adsorption energy on their monolayer surfaces (−0.517 eV and −0.545 eV), low open-circuit voltages (0.3–0.0115 V and 0.289–0.0181 V), low diffusion barriers (0.11 eV and 0.27 eV), and minimal lattice deformation during lithiation and delithiation processes (1.7 % and 1.4 %). Furthermore, even during the lithiation and delithiation processes, ZrSiSe and ZrSiS monolayers maintain good electron conductivity. Based on these results, we believe that ZrSiSe and ZrSiS monolayers are promising candidates for lithium-ion battery anode materials.</div></div>","PeriodicalId":10650,"journal":{"name":"Computational Materials Science","volume":"246 ","pages":"Article 113397"},"PeriodicalIF":3.1000,"publicationDate":"2024-09-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational Materials Science","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0927025624006189","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

The development of high-performance, high-capacity, and excellent conductivity anode materials is crucial for the advancement of lithium-ion batteries. In this study, we systematically assessed the potential of two-dimensional ZrSiSe and ZrSiS monolayers as anode materials for lithium-ion batteries using first-principles calculations. The results show that ZrSiSe and ZrSiS not only exhibit excellent conductivity and dynamic, thermodynamic stability but also possess a strong lithium adsorption energy on their monolayer surfaces (−0.517 eV and −0.545 eV), low open-circuit voltages (0.3–0.0115 V and 0.289–0.0181 V), low diffusion barriers (0.11 eV and 0.27 eV), and minimal lattice deformation during lithiation and delithiation processes (1.7 % and 1.4 %). Furthermore, even during the lithiation and delithiation processes, ZrSiSe and ZrSiS monolayers maintain good electron conductivity. Based on these results, we believe that ZrSiSe and ZrSiS monolayers are promising candidates for lithium-ion battery anode materials.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
二维狄拉克材料 ZrSiSe 和 ZrSiS 作为锂离子电池潜在负极材料的适用性:第一原理研究
开发高性能、高容量和优异导电性的负极材料对锂离子电池的发展至关重要。在本研究中,我们利用第一原理计算系统地评估了二维 ZrSiSe 和 ZrSiS 单层作为锂离子电池负极材料的潜力。结果表明,ZrSiSe 和 ZrSiS 不仅具有优异的导电性和动态热力学稳定性,而且在其单层表面具有很强的锂吸附能(-0.517 eV 和 -0.545 eV)、较低的开路电压(0.3-0.0115 V 和 0.289-0.0181 V)、较低的扩散势垒(0.11 eV 和 0.27 eV),以及在锂化和脱锂过程中最小的晶格变形(1.7 % 和 1.4 %)。此外,即使在石化和脱硅过程中,ZrSiSe 和 ZrSiS 单层也能保持良好的电子导电性。基于这些结果,我们认为 ZrSiSe 和 ZrSiS 单层有望成为锂离子电池负极材料的候选材料。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Computational Materials Science
Computational Materials Science 工程技术-材料科学:综合
CiteScore
6.50
自引率
6.10%
发文量
665
审稿时长
26 days
期刊介绍: The goal of Computational Materials Science is to report on results that provide new or unique insights into, or significantly expand our understanding of, the properties of materials or phenomena associated with their design, synthesis, processing, characterization, and utilization. To be relevant to the journal, the results should be applied or applicable to specific material systems that are discussed within the submission.
期刊最新文献
Study of ReaxFF molecular dynamics simulation about chemical reactions mechanisms of magnesium-aluminium spinel polishing Prediction of TMCCs@MoS2 heterostructures with homogeneous surface terminations as promising anodes for sodium and potassium ion batteries Energetic and structural stability of vacancy clusters in Al under external stress conditions Ab initio study of the laser-induced ultrafast spin dynamics on Ni4@C40H34 carbon cross Pitfalls of exchange–correlation functionals in description of magnetism: Cautionary tale of the FeRh alloy
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1