Liyan Lou , Tianhui Chen , Zhijiang Bi , Wei Wang , Zhihai Cai , Ji Zhou , Ruohui Shuai , Yi Liu , Haidou Wang , Chengxin Li
{"title":"Effect of annealing temperature on the microstructure and mechanical properties of Al0.2CrNbTiV lightweight refractory high-entropy alloy","authors":"Liyan Lou , Tianhui Chen , Zhijiang Bi , Wei Wang , Zhihai Cai , Ji Zhou , Ruohui Shuai , Yi Liu , Haidou Wang , Chengxin Li","doi":"10.1016/j.ijrmhm.2024.106903","DOIUrl":null,"url":null,"abstract":"<div><div>The DSC analysis and heat treatment of the newly proposed Al<sub>0.2</sub>CrNbTiV lightweight refractory high-entropy alloy prepared by vacuum arc melting was investigated, and the evolutions of the microstructure and mechanical properties of the alloy after homogenization annealing at 650 °C, 850 °C and 1050 °C for 12 h were analyzed. The results show that the Al<sub>0.2</sub>CrNbTiV high-entropy alloy could maintain stable BCC solid solution structure from room temperature to 800 °C. The alloy annealed at 650 °C exhibited simple BCC structure with coarse equiaxed grains; after annealing at 850 °C, fine acicular and irregular block-like C14 Laves phases were uniformly precipitated in the grain and grain boundaries, meanwhile, the C14 Laves phase get coarser with the annealing temperature increased to 1050 °C. With the increase of annealing temperature, the microhardness of the Al<sub>0.2</sub>CrNbTiV alloy increased first and then decreased, reaching the maximum value of 692 HV after annealing at 850 °C. Due to the high dislocation density and the formation of kink bands, the alloy annealed at 650 °C showed a good combination of plastic and strength, with the work hardening ability strengthened simultaneously, the compressive yield strength could be up to 1454 MPa, with strain >50 %. Due to the precipitation of the hard and brittle C14 Laves phase, the load-bearing capacity of the alloy was reduced after annealing at 850 °C and 1050 °C. However, the wear resistance of the alloy also improved with the presence of the hard phase. The friction coefficient of Al<sub>0.2</sub>CrNbTiV alloy annealed at 650 °C is 0.67, with the abrasive wear acting as the main wear mechanism, and the alloy after annealing at 850 °C shew the best wear resistance, with the friction coefficient of 0.63, and delamination wear mechanism.</div></div>","PeriodicalId":14216,"journal":{"name":"International Journal of Refractory Metals & Hard Materials","volume":"125 ","pages":"Article 106903"},"PeriodicalIF":4.2000,"publicationDate":"2024-09-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Refractory Metals & Hard Materials","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0263436824003512","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
The DSC analysis and heat treatment of the newly proposed Al0.2CrNbTiV lightweight refractory high-entropy alloy prepared by vacuum arc melting was investigated, and the evolutions of the microstructure and mechanical properties of the alloy after homogenization annealing at 650 °C, 850 °C and 1050 °C for 12 h were analyzed. The results show that the Al0.2CrNbTiV high-entropy alloy could maintain stable BCC solid solution structure from room temperature to 800 °C. The alloy annealed at 650 °C exhibited simple BCC structure with coarse equiaxed grains; after annealing at 850 °C, fine acicular and irregular block-like C14 Laves phases were uniformly precipitated in the grain and grain boundaries, meanwhile, the C14 Laves phase get coarser with the annealing temperature increased to 1050 °C. With the increase of annealing temperature, the microhardness of the Al0.2CrNbTiV alloy increased first and then decreased, reaching the maximum value of 692 HV after annealing at 850 °C. Due to the high dislocation density and the formation of kink bands, the alloy annealed at 650 °C showed a good combination of plastic and strength, with the work hardening ability strengthened simultaneously, the compressive yield strength could be up to 1454 MPa, with strain >50 %. Due to the precipitation of the hard and brittle C14 Laves phase, the load-bearing capacity of the alloy was reduced after annealing at 850 °C and 1050 °C. However, the wear resistance of the alloy also improved with the presence of the hard phase. The friction coefficient of Al0.2CrNbTiV alloy annealed at 650 °C is 0.67, with the abrasive wear acting as the main wear mechanism, and the alloy after annealing at 850 °C shew the best wear resistance, with the friction coefficient of 0.63, and delamination wear mechanism.
期刊介绍:
The International Journal of Refractory Metals and Hard Materials (IJRMHM) publishes original research articles concerned with all aspects of refractory metals and hard materials. Refractory metals are defined as metals with melting points higher than 1800 °C. These are tungsten, molybdenum, chromium, tantalum, niobium, hafnium, and rhenium, as well as many compounds and alloys based thereupon. Hard materials that are included in the scope of this journal are defined as materials with hardness values higher than 1000 kg/mm2, primarily intended for applications as manufacturing tools or wear resistant components in mechanical systems. Thus they encompass carbides, nitrides and borides of metals, and related compounds. A special focus of this journal is put on the family of hardmetals, which is also known as cemented tungsten carbide, and cermets which are based on titanium carbide and carbonitrides with or without a metal binder. Ceramics and superhard materials including diamond and cubic boron nitride may also be accepted provided the subject material is presented as hard materials as defined above.