Jiawei Yang , Hao Gu , Yuhui Zhu , Jiaojiao Shao , Haishuang Chang , Mingliang Zhou , Jie Wang , Xinquan Jiang
{"title":"Self-cascade ROS-trapping bioreaction system reverses stem cell oxidative stress fate for osteogenesis","authors":"Jiawei Yang , Hao Gu , Yuhui Zhu , Jiaojiao Shao , Haishuang Chang , Mingliang Zhou , Jie Wang , Xinquan Jiang","doi":"10.1016/j.nantod.2024.102514","DOIUrl":null,"url":null,"abstract":"<div><div>Reactive oxygen species (ROS) scavenging is essential for periodontal regeneration. However, the dynamic change of the applied materials within the ROS-rich environment and the residual oxidation products in the host highly impact periodontal regeneration. This study successfully constructs a bioreaction system via thiol-ene click chemistry, leveraging the high affinity of glutathione (GSH) for ROS to attract excess ROS to the crosslinking points. Two minutes after hydrogen peroxide (H<sub>2</sub>O<sub>2</sub>) treatment, the ROS level in the G8–0 hydrogel acutely decreases, reaching a 4.4 % reduction within 10 minutes, confirming the ROS-trapping efficacy. Through a ‘bait switch-on’ mechanism, hexagonal boron nitride (hBN) takes over the captured ROS and the oxidation products of pectin further drive the reduction reaction, ultimately restoring the extracellular environment. The self-cascade products, oxidized hBN, reshape the intracellular oxidative stress (OS) environment, achieving a synergistic extra- and intra-cellular treatment. The significantly high reduced to oxidized glutathione (GSH/GSSG) ratio in G8–10 hydrogel (∼80 %) illustrates a reversal of oxidative stress in bone marrow stem cells (BMSCs). On a molecular level, the bioreaction system inhibits the NF-κB pathway, promoting the expression of key antioxidant genes (<em>Nqo1</em> and <em>Nrf2</em>) and osteogenic molecules (ALP and OCN), thereby reversing the detrimental effects of OS on BMSCs. In vivo application demonstrated the system’s strong redox-balancing and osteogenic capabilities in the periodontal inflammation environment. This novel antioxidant bioreaction system, characterized by self-cascade ROS-trapping and product utilization, offers innovative treatment strategies for tissue regeneration under conditions of excessive OS.</div></div>","PeriodicalId":395,"journal":{"name":"Nano Today","volume":"59 ","pages":"Article 102514"},"PeriodicalIF":13.2000,"publicationDate":"2024-09-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nano Today","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1748013224003700","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Reactive oxygen species (ROS) scavenging is essential for periodontal regeneration. However, the dynamic change of the applied materials within the ROS-rich environment and the residual oxidation products in the host highly impact periodontal regeneration. This study successfully constructs a bioreaction system via thiol-ene click chemistry, leveraging the high affinity of glutathione (GSH) for ROS to attract excess ROS to the crosslinking points. Two minutes after hydrogen peroxide (H2O2) treatment, the ROS level in the G8–0 hydrogel acutely decreases, reaching a 4.4 % reduction within 10 minutes, confirming the ROS-trapping efficacy. Through a ‘bait switch-on’ mechanism, hexagonal boron nitride (hBN) takes over the captured ROS and the oxidation products of pectin further drive the reduction reaction, ultimately restoring the extracellular environment. The self-cascade products, oxidized hBN, reshape the intracellular oxidative stress (OS) environment, achieving a synergistic extra- and intra-cellular treatment. The significantly high reduced to oxidized glutathione (GSH/GSSG) ratio in G8–10 hydrogel (∼80 %) illustrates a reversal of oxidative stress in bone marrow stem cells (BMSCs). On a molecular level, the bioreaction system inhibits the NF-κB pathway, promoting the expression of key antioxidant genes (Nqo1 and Nrf2) and osteogenic molecules (ALP and OCN), thereby reversing the detrimental effects of OS on BMSCs. In vivo application demonstrated the system’s strong redox-balancing and osteogenic capabilities in the periodontal inflammation environment. This novel antioxidant bioreaction system, characterized by self-cascade ROS-trapping and product utilization, offers innovative treatment strategies for tissue regeneration under conditions of excessive OS.
期刊介绍:
Nano Today is a journal dedicated to publishing influential and innovative work in the field of nanoscience and technology. It covers a wide range of subject areas including biomaterials, materials chemistry, materials science, chemistry, bioengineering, biochemistry, genetics and molecular biology, engineering, and nanotechnology. The journal considers articles that inform readers about the latest research, breakthroughs, and topical issues in these fields. It provides comprehensive coverage through a mixture of peer-reviewed articles, research news, and information on key developments. Nano Today is abstracted and indexed in Science Citation Index, Ei Compendex, Embase, Scopus, and INSPEC.