{"title":"A Coupled Hidden Markov Model framework for measuring the dynamics of categorization","authors":"Manuel Villarreal, Michael D. Lee","doi":"10.1016/j.jmp.2024.102884","DOIUrl":null,"url":null,"abstract":"<div><div>We introduce a new framework for measuring the dynamics of category learning using Coupled Hidden Markov Models (CHMMs). The key assumptions of the framework are that people maintain a latent assignment of every stimulus to a category, and that they can update the assignments for all stimuli whenever they encounter any stimulus. These assumptions contrast with many existing accounts of category learning, which either do not allow for what is learned about one stimulus to influence the category association of others, or allow only for indirect influence. The CHMM framework allows tailored models to be developed for specific category learning tasks, taking as input the stimulus sequence and category responses people make, and producing as output inferences about the underlying dynamics of category assignments and the mechanics of the response processes. We demonstrate the framework by applying it to a categorization task considered by Lee and Navarro (2002), showing how the model measures the change in participants’ latent category assignments as they learn the category structure. We conclude by discussing potential applications of the CHMM framework to category learning situations involving prior knowledge, changing category structures, and category learning tasks that involve the consideration of multiple stimuli at one time.</div></div>","PeriodicalId":50140,"journal":{"name":"Journal of Mathematical Psychology","volume":"123 ","pages":"Article 102884"},"PeriodicalIF":2.2000,"publicationDate":"2024-09-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Mathematical Psychology","FirstCategoryId":"102","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022249624000531","RegionNum":4,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0
Abstract
We introduce a new framework for measuring the dynamics of category learning using Coupled Hidden Markov Models (CHMMs). The key assumptions of the framework are that people maintain a latent assignment of every stimulus to a category, and that they can update the assignments for all stimuli whenever they encounter any stimulus. These assumptions contrast with many existing accounts of category learning, which either do not allow for what is learned about one stimulus to influence the category association of others, or allow only for indirect influence. The CHMM framework allows tailored models to be developed for specific category learning tasks, taking as input the stimulus sequence and category responses people make, and producing as output inferences about the underlying dynamics of category assignments and the mechanics of the response processes. We demonstrate the framework by applying it to a categorization task considered by Lee and Navarro (2002), showing how the model measures the change in participants’ latent category assignments as they learn the category structure. We conclude by discussing potential applications of the CHMM framework to category learning situations involving prior knowledge, changing category structures, and category learning tasks that involve the consideration of multiple stimuli at one time.
期刊介绍:
The Journal of Mathematical Psychology includes articles, monographs and reviews, notes and commentaries, and book reviews in all areas of mathematical psychology. Empirical and theoretical contributions are equally welcome.
Areas of special interest include, but are not limited to, fundamental measurement and psychological process models, such as those based upon neural network or information processing concepts. A partial listing of substantive areas covered include sensation and perception, psychophysics, learning and memory, problem solving, judgment and decision-making, and motivation.
The Journal of Mathematical Psychology is affiliated with the Society for Mathematical Psychology.
Research Areas include:
• Models for sensation and perception, learning, memory and thinking
• Fundamental measurement and scaling
• Decision making
• Neural modeling and networks
• Psychophysics and signal detection
• Neuropsychological theories
• Psycholinguistics
• Motivational dynamics
• Animal behavior
• Psychometric theory