Inflammasomes and their role in PANoptosomes

IF 6.6 2区 医学 Q1 IMMUNOLOGY Current Opinion in Immunology Pub Date : 2024-09-27 DOI:10.1016/j.coi.2024.102489
Vinod Nadella, Thirumala-Devi Kanneganti
{"title":"Inflammasomes and their role in PANoptosomes","authors":"Vinod Nadella,&nbsp;Thirumala-Devi Kanneganti","doi":"10.1016/j.coi.2024.102489","DOIUrl":null,"url":null,"abstract":"<div><div>Inflammasomes are multiprotein signaling structures in the innate immune system that drive cell death and inflammatory responses. These protein complexes generally comprise an innate immune sensor, the adaptor protein ASC, and the inflammatory protease caspase-1. Inflammasomes are formed when a cytosolic sensor, also known as a pattern recognition receptor, senses its cognate ligand, which can include microbial components, endogenous damage/danger signals, or environmental stimuli. Inflammasome assembly leads to autoproteolytic cleavage and activation of caspase-1. This activation, in turn, induces proteolytic maturation and release of the proinflammatory cytokines interleukin (IL)-1β and IL-18, and the activation of the pore-forming molecule gasdermin D to induce cell death, known as pyroptosis. Recent studies have identified inflammasomes as integral components of larger cell death complexes, known as PANoptosomes. These PANoptosomes regulate PANoptosis, an innate immune cell death pathway initiated by innate immune sensors and driven by caspases and receptor-interacting serine/threonine protein kinases. PANoptosome assembly and activation leads to cell lysis, inflammation, and the release of proinflammatory cytokines, damage-associated molecular patterns, and alarmins. In this review, we discuss the current understanding of different inflammasomes and their role in PANoptosomes.</div></div>","PeriodicalId":11361,"journal":{"name":"Current Opinion in Immunology","volume":null,"pages":null},"PeriodicalIF":6.6000,"publicationDate":"2024-09-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Opinion in Immunology","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0952791524000797","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"IMMUNOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Inflammasomes are multiprotein signaling structures in the innate immune system that drive cell death and inflammatory responses. These protein complexes generally comprise an innate immune sensor, the adaptor protein ASC, and the inflammatory protease caspase-1. Inflammasomes are formed when a cytosolic sensor, also known as a pattern recognition receptor, senses its cognate ligand, which can include microbial components, endogenous damage/danger signals, or environmental stimuli. Inflammasome assembly leads to autoproteolytic cleavage and activation of caspase-1. This activation, in turn, induces proteolytic maturation and release of the proinflammatory cytokines interleukin (IL)-1β and IL-18, and the activation of the pore-forming molecule gasdermin D to induce cell death, known as pyroptosis. Recent studies have identified inflammasomes as integral components of larger cell death complexes, known as PANoptosomes. These PANoptosomes regulate PANoptosis, an innate immune cell death pathway initiated by innate immune sensors and driven by caspases and receptor-interacting serine/threonine protein kinases. PANoptosome assembly and activation leads to cell lysis, inflammation, and the release of proinflammatory cytokines, damage-associated molecular patterns, and alarmins. In this review, we discuss the current understanding of different inflammasomes and their role in PANoptosomes.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
炎症体及其在泛光体中的作用
炎症体是先天性免疫系统中的多蛋白信号结构,可驱动细胞死亡和炎症反应。这些蛋白复合物通常由先天性免疫传感器、适配蛋白 ASC 和炎症蛋白酶 caspase-1 组成。当细胞膜传感器(也称为模式识别受体)感知到它的同源配体(可能包括微生物成分、内源性损伤/危险信号或环境刺激)时,就会形成炎症小体。炎症小体的组装会导致 caspase-1 的自蛋白分解和激活。这种活化反过来又会诱导蛋白水解成熟,释放促炎细胞因子白细胞介素(IL)-1β 和 IL-18,并激活孔形成分子 gasdermin D,诱导细胞死亡,即所谓的脓毒症。最近的研究发现,炎性体是更大的细胞死亡复合物(称为 PANoptosomes)的组成部分。PANoptosomes 是一种先天性免疫细胞死亡途径,由先天性免疫传感器启动,并由 Caspases 和与受体相互作用的丝氨酸/苏氨酸蛋白激酶驱动。PANoptosome 的组装和激活会导致细胞裂解、炎症以及促炎细胞因子、损伤相关分子模式和警戒素的释放。在这篇综述中,我们将讨论目前对不同炎性体及其在 PANoptosome 中作用的理解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
13.30
自引率
1.40%
发文量
94
审稿时长
67 days
期刊介绍: Current Opinion in Immunology aims to stimulate scientifically grounded, interdisciplinary, multi-scale debate and exchange of ideas. It contains polished, concise and timely reviews and opinions, with particular emphasis on those articles published in the past two years. In addition to describing recent trends, the authors are encouraged to give their subjective opinion of the topics discussed. In Current Opinion in Immunology we help the reader by providing in a systematic manner: 1. The views of experts on current advances in their field in a clear and readable form. 2. Evaluations of the most interesting papers, annotated by experts, from the great wealth of original publications. Current Opinion in Immunology will serve as an invaluable source of information for researchers, lecturers, teachers, professionals, policy makers and students. Current Opinion in Immunology builds on Elsevier''s reputation for excellence in scientific publishing and long-standing commitment to communicating reproducible biomedical research targeted at improving human health. It is a companion to the new Gold Open Access journal Current Research in Immunology and is part of the Current Opinion and Research(CO+RE) suite of journals. All CO+RE journals leverage the Current Opinion legacy-of editorial excellence, high-impact, and global reach-to ensure they are a widely read resource that is integral to scientists'' workflow.
期刊最新文献
Tissue-resident memory cells in antitumoral immunity and cancer immunotherapy Metabolic requirements of type 2 lymphocytes in allergic disease The immunometabolic roots of aging Host-encoded antivirulence defenses: host physiologies teach pathogens to play nice Metabolism and macrophages in the tumor microenvironment
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1