{"title":"Effect of particle Froude number on sub-grid effective drag, filtered and residual stresses in fluidized gas-particle flows","authors":"Christian C. Milioli, Fernando E. Milioli","doi":"10.1016/j.partic.2024.09.002","DOIUrl":null,"url":null,"abstract":"<div><div>Sub-grid effective drag, filtered and residual stresses in the meso-scale of gas-particle fluidized flows are intrinsically affected by underlying micro-scale conditions as well as non-local effects related to macro-scale conditions. In this work we applied microscopic two-fluid modeling to experiment with particle Froude number in order to evaluate the impact of this micro-scale condition over the concerning meso-scale derived sub-grid parameters. We performed highly resolved simulations in periodic domains for particle Froude numbers from 12.21 to 799.22, for a wide range of macro-scale conditions. Results were filtered and classified by ranges of meso-scale markers for the various particle Froude numbers. The particle Froude number was found to considerably affect the structural refinement of the heterogeneous flow fields thereby directly impacting effective drag, filtered and residual stresses. All of those parameters showed systematic behaviors in relation to particle Froude number, thereby providing sound data for new sub-grid modeling propositions.</div></div>","PeriodicalId":401,"journal":{"name":"Particuology","volume":"95 ","pages":"Pages 36-48"},"PeriodicalIF":4.1000,"publicationDate":"2024-09-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Particuology","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1674200124001767","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Sub-grid effective drag, filtered and residual stresses in the meso-scale of gas-particle fluidized flows are intrinsically affected by underlying micro-scale conditions as well as non-local effects related to macro-scale conditions. In this work we applied microscopic two-fluid modeling to experiment with particle Froude number in order to evaluate the impact of this micro-scale condition over the concerning meso-scale derived sub-grid parameters. We performed highly resolved simulations in periodic domains for particle Froude numbers from 12.21 to 799.22, for a wide range of macro-scale conditions. Results were filtered and classified by ranges of meso-scale markers for the various particle Froude numbers. The particle Froude number was found to considerably affect the structural refinement of the heterogeneous flow fields thereby directly impacting effective drag, filtered and residual stresses. All of those parameters showed systematic behaviors in relation to particle Froude number, thereby providing sound data for new sub-grid modeling propositions.
期刊介绍:
The word ‘particuology’ was coined to parallel the discipline for the science and technology of particles.
Particuology is an interdisciplinary journal that publishes frontier research articles and critical reviews on the discovery, formulation and engineering of particulate materials, processes and systems. It especially welcomes contributions utilising advanced theoretical, modelling and measurement methods to enable the discovery and creation of new particulate materials, and the manufacturing of functional particulate-based products, such as sensors.
Papers are handled by Thematic Editors who oversee contributions from specific subject fields. These fields are classified into: Particle Synthesis and Modification; Particle Characterization and Measurement; Granular Systems and Bulk Solids Technology; Fluidization and Particle-Fluid Systems; Aerosols; and Applications of Particle Technology.
Key topics concerning the creation and processing of particulates include:
-Modelling and simulation of particle formation, collective behaviour of particles and systems for particle production over a broad spectrum of length scales
-Mining of experimental data for particle synthesis and surface properties to facilitate the creation of new materials and processes
-Particle design and preparation including controlled response and sensing functionalities in formation, delivery systems and biological systems, etc.
-Experimental and computational methods for visualization and analysis of particulate system.
These topics are broadly relevant to the production of materials, pharmaceuticals and food, and to the conversion of energy resources to fuels and protection of the environment.