Yong Hee Jo , Hyung-Jun Cho , Junha Yang , Sukjin Lee
{"title":"Enhancing charpy absorbed energy of aged duplex lightweight steel plates through TRIP and TWIP mechanisms","authors":"Yong Hee Jo , Hyung-Jun Cho , Junha Yang , Sukjin Lee","doi":"10.1016/j.matchar.2024.114413","DOIUrl":null,"url":null,"abstract":"<div><div>Ensuring toughness in thick hot-rolled plates remains a challenge for lightweight steels in automotive, shipbuilding, military, and construction industries despite improved tensile properties. This study investigated the Charpy absorbed energy of thick hot-rolled Fe-0.4C-15Mn-6Al duplex lightweight steel plates exhibiting TRIP and TWIP mechanisms, aged at 450–500 °C to precipitate κ-carbides. Fracture initiation and propagation energies measured from instrumented Charpy impact testing were analyzed through microstructural and microfracture analyses. The 500 °C-aged (A500) specimen showed the highest Charpy absorbed energy, composed of the highest fracture initiation and propagation energies across all test temperatures, particularly due to active TWIP and TRIP mechanisms along with significant κ-carbide precipitation strengthening. Despite predominantly ductile fracture modes, regardless of aging temperature and test temperature, deformation mechanisms were influenced by stacking fault energy (SFE). Aging resulted in κ-carbide precipitation, reducing C and Mn contents in austenite and lowering SFE. At 25 °C, the superior energy absorption of the A500 specimen (296 J) was attributed to its high flow stress and extensive roughness in the fracture surface due to crack deflection in the fracture initiation region and zigzag crack propagation. The Charpy absorbed energy decreased significantly at lower temperatures due to limited development of slip line field and less zigzag crack propagation. Despite this, the A500 specimen maintained the highest energy absorption due to its optimized TWIP and TRIP mechanisms and κ-carbide precipitation strengthening.</div></div>","PeriodicalId":18727,"journal":{"name":"Materials Characterization","volume":"217 ","pages":"Article 114413"},"PeriodicalIF":4.8000,"publicationDate":"2024-09-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Characterization","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1044580324007940","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, CHARACTERIZATION & TESTING","Score":null,"Total":0}
引用次数: 0
Abstract
Ensuring toughness in thick hot-rolled plates remains a challenge for lightweight steels in automotive, shipbuilding, military, and construction industries despite improved tensile properties. This study investigated the Charpy absorbed energy of thick hot-rolled Fe-0.4C-15Mn-6Al duplex lightweight steel plates exhibiting TRIP and TWIP mechanisms, aged at 450–500 °C to precipitate κ-carbides. Fracture initiation and propagation energies measured from instrumented Charpy impact testing were analyzed through microstructural and microfracture analyses. The 500 °C-aged (A500) specimen showed the highest Charpy absorbed energy, composed of the highest fracture initiation and propagation energies across all test temperatures, particularly due to active TWIP and TRIP mechanisms along with significant κ-carbide precipitation strengthening. Despite predominantly ductile fracture modes, regardless of aging temperature and test temperature, deformation mechanisms were influenced by stacking fault energy (SFE). Aging resulted in κ-carbide precipitation, reducing C and Mn contents in austenite and lowering SFE. At 25 °C, the superior energy absorption of the A500 specimen (296 J) was attributed to its high flow stress and extensive roughness in the fracture surface due to crack deflection in the fracture initiation region and zigzag crack propagation. The Charpy absorbed energy decreased significantly at lower temperatures due to limited development of slip line field and less zigzag crack propagation. Despite this, the A500 specimen maintained the highest energy absorption due to its optimized TWIP and TRIP mechanisms and κ-carbide precipitation strengthening.
期刊介绍:
Materials Characterization features original articles and state-of-the-art reviews on theoretical and practical aspects of the structure and behaviour of materials.
The Journal focuses on all characterization techniques, including all forms of microscopy (light, electron, acoustic, etc.,) and analysis (especially microanalysis and surface analytical techniques). Developments in both this wide range of techniques and their application to the quantification of the microstructure of materials are essential facets of the Journal.
The Journal provides the Materials Scientist/Engineer with up-to-date information on many types of materials with an underlying theme of explaining the behavior of materials using novel approaches. Materials covered by the journal include:
Metals & Alloys
Ceramics
Nanomaterials
Biomedical materials
Optical materials
Composites
Natural Materials.