Enhancing microseismic/acoustic emission source localization accuracy with an outlier-robust kernel density estimation approach

IF 11.7 1区 工程技术 Q1 MINING & MINERAL PROCESSING International Journal of Mining Science and Technology Pub Date : 2024-07-01 DOI:10.1016/j.ijmst.2024.07.005
Jie Chen , Huiqiong Huang , Yichao Rui , Yuanyuan Pu , Sheng Zhang , Zheng Li , Wenzhong Wang
{"title":"Enhancing microseismic/acoustic emission source localization accuracy with an outlier-robust kernel density estimation approach","authors":"Jie Chen ,&nbsp;Huiqiong Huang ,&nbsp;Yichao Rui ,&nbsp;Yuanyuan Pu ,&nbsp;Sheng Zhang ,&nbsp;Zheng Li ,&nbsp;Wenzhong Wang","doi":"10.1016/j.ijmst.2024.07.005","DOIUrl":null,"url":null,"abstract":"<div><div>Monitoring sensors in complex engineering environments often record abnormal data, leading to significant positioning errors. To reduce the influence of abnormal arrival times, we introduce an innovative, outlier-robust localization method that integrates kernel density estimation (KDE) with damping linear correction to enhance the precision of microseismic/acoustic emission (MS/AE) source positioning. Our approach systematically addresses abnormal arrival times through a three-step process: initial location by 4-arrival combinations, elimination of outliers based on three-dimensional KDE, and refinement using a linear correction with an adaptive damping factor. We validate our method through lead-breaking experiments, demonstrating over a 23% improvement in positioning accuracy with a maximum error of 9.12 mm (relative error of 15.80%)—outperforming 4 existing methods. Simulations under various system errors, outlier scales, and ratios substantiate our method’s superior performance. Field blasting experiments also confirm the practical applicability, with an average positioning error of 11.71 m (relative error of 7.59%), compared to 23.56, 66.09, 16.95, and 28.52 m for other methods. This research is significant as it enhances the robustness of MS/AE source localization when confronted with data anomalies. It also provides a practical solution for real-world engineering and safety monitoring applications.</div></div>","PeriodicalId":48625,"journal":{"name":"International Journal of Mining Science and Technology","volume":"34 7","pages":"Pages 943-956"},"PeriodicalIF":11.7000,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Mining Science and Technology","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2095268624000934","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MINING & MINERAL PROCESSING","Score":null,"Total":0}
引用次数: 0

Abstract

Monitoring sensors in complex engineering environments often record abnormal data, leading to significant positioning errors. To reduce the influence of abnormal arrival times, we introduce an innovative, outlier-robust localization method that integrates kernel density estimation (KDE) with damping linear correction to enhance the precision of microseismic/acoustic emission (MS/AE) source positioning. Our approach systematically addresses abnormal arrival times through a three-step process: initial location by 4-arrival combinations, elimination of outliers based on three-dimensional KDE, and refinement using a linear correction with an adaptive damping factor. We validate our method through lead-breaking experiments, demonstrating over a 23% improvement in positioning accuracy with a maximum error of 9.12 mm (relative error of 15.80%)—outperforming 4 existing methods. Simulations under various system errors, outlier scales, and ratios substantiate our method’s superior performance. Field blasting experiments also confirm the practical applicability, with an average positioning error of 11.71 m (relative error of 7.59%), compared to 23.56, 66.09, 16.95, and 28.52 m for other methods. This research is significant as it enhances the robustness of MS/AE source localization when confronted with data anomalies. It also provides a practical solution for real-world engineering and safety monitoring applications.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用离群值稳健的核密度估计方法提高微地震/声发射源定位精度
复杂工程环境中的监测传感器经常会记录异常数据,从而导致严重的定位误差。为了减少异常到达时间的影响,我们引入了一种创新的、可消除异常值的定位方法,该方法将核密度估计(KDE)与阻尼线性校正相结合,以提高微地震/声发射(MS/AE)源定位的精度。我们的方法通过三个步骤系统地解决异常到达时间问题:通过 4 个到达时间组合进行初始定位,基于三维 KDE 消除异常值,以及使用带有自适应阻尼系数的线性校正进行细化。我们通过突破性实验验证了我们的方法,结果表明定位精度提高了 23%,最大误差为 9.12 毫米(相对误差为 15.80%),优于 4 种现有方法。在各种系统误差、离群规模和比率下进行的模拟证实了我们方法的卓越性能。现场爆破实验也证实了该方法的实用性,其平均定位误差为 11.71 米(相对误差为 7.59%),而其他方法的误差分别为 23.56 米、66.09 米、16.95 米和 28.52 米。这项研究意义重大,因为它增强了 MS/AE 信号源定位在面对数据异常时的鲁棒性。它还为实际工程和安全监测应用提供了实用的解决方案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
International Journal of Mining Science and Technology
International Journal of Mining Science and Technology Earth and Planetary Sciences-Geotechnical Engineering and Engineering Geology
CiteScore
19.10
自引率
11.90%
发文量
2541
审稿时长
44 days
期刊介绍: The International Journal of Mining Science and Technology, founded in 1990 as the Journal of China University of Mining and Technology, is a monthly English-language journal. It publishes original research papers and high-quality reviews that explore the latest advancements in theories, methodologies, and applications within the realm of mining sciences and technologies. The journal serves as an international exchange forum for readers and authors worldwide involved in mining sciences and technologies. All papers undergo a peer-review process and meticulous editing by specialists and authorities, with the entire submission-to-publication process conducted electronically.
期刊最新文献
Gouge stability controlled by temperature elevation and obsidian addition in basaltic faults and implications for moonquakes Physical, mechanical and thermal properties of vacuum sintered HUST-1 lunar regolith simulant Design, test, and verification of in-situ condition preserved coring and analysis system in lunar-based simulation environment Machine learning applications on lunar meteorite minerals: From classification to mechanical properties prediction Formation of Tianwen-1 landing crater and mechanical properties of Martian soil near the landing site
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1