Zongyu Li;Jason Hu;Xiaojian Xu;Liyue Shen;Jeffrey A. Fessler
{"title":"Accelerated Wirtinger Flow With Score-Based Image Priors for Holographic Phase Retrieval in Poisson-Gaussian Noise Conditions","authors":"Zongyu Li;Jason Hu;Xiaojian Xu;Liyue Shen;Jeffrey A. Fessler","doi":"10.1109/TCI.2024.3458418","DOIUrl":null,"url":null,"abstract":"Phase retrieval (PR) is a crucial problem in many imaging applications. This study focuses on holographic phase retrieval in situations where the measurements are degraded by a combination of Poisson and Gaussian noise, as commonly occurs in optical imaging systems. We propose a new algorithm called “AWFS” that uses accelerated Wirtinger flow (AWF) with a learned score function as a generative prior. Specifically, we formulate the PR problem as an optimization problem that incorporates both data fidelity and regularization terms. We calculate the gradient of the log-likelihood function for PR and determine its corresponding Lipschitz constant. Additionally, we introduce a generative prior in our regularization framework by using score matching to capture information about the gradient of image prior distributions. We provide theoretical analysis that establishes a critical-point convergence guarantee for one version of the proposed algorithm. The results of our simulation experiments on three different datasets show the following. 1) By using the PG likelihood model, a practical version of the proposed algorithm improves reconstruction compared to algorithms based solely on Gaussian or Poisson likelihoods. 2) The proposed score-based image prior method leads to better reconstruction quality than a method based on denoising diffusion probabilistic model (DDPM), as well as a plug-and-play alternating direction method of multipliers (PnP-ADMM) and regularization by denoising (RED).","PeriodicalId":56022,"journal":{"name":"IEEE Transactions on Computational Imaging","volume":"10 ","pages":"1384-1399"},"PeriodicalIF":4.2000,"publicationDate":"2024-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Computational Imaging","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10695090/","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
Phase retrieval (PR) is a crucial problem in many imaging applications. This study focuses on holographic phase retrieval in situations where the measurements are degraded by a combination of Poisson and Gaussian noise, as commonly occurs in optical imaging systems. We propose a new algorithm called “AWFS” that uses accelerated Wirtinger flow (AWF) with a learned score function as a generative prior. Specifically, we formulate the PR problem as an optimization problem that incorporates both data fidelity and regularization terms. We calculate the gradient of the log-likelihood function for PR and determine its corresponding Lipschitz constant. Additionally, we introduce a generative prior in our regularization framework by using score matching to capture information about the gradient of image prior distributions. We provide theoretical analysis that establishes a critical-point convergence guarantee for one version of the proposed algorithm. The results of our simulation experiments on three different datasets show the following. 1) By using the PG likelihood model, a practical version of the proposed algorithm improves reconstruction compared to algorithms based solely on Gaussian or Poisson likelihoods. 2) The proposed score-based image prior method leads to better reconstruction quality than a method based on denoising diffusion probabilistic model (DDPM), as well as a plug-and-play alternating direction method of multipliers (PnP-ADMM) and regularization by denoising (RED).
期刊介绍:
The IEEE Transactions on Computational Imaging will publish articles where computation plays an integral role in the image formation process. Papers will cover all areas of computational imaging ranging from fundamental theoretical methods to the latest innovative computational imaging system designs. Topics of interest will include advanced algorithms and mathematical techniques, model-based data inversion, methods for image and signal recovery from sparse and incomplete data, techniques for non-traditional sensing of image data, methods for dynamic information acquisition and extraction from imaging sensors, software and hardware for efficient computation in imaging systems, and highly novel imaging system design.