Repurposing idle wells in the North German Basin as deep borehole heat exchangers

IF 2.9 2区 地球科学 Q3 ENERGY & FUELS Geothermal Energy Pub Date : 2024-09-28 DOI:10.1186/s40517-024-00315-4
Nora Koltzer, Johannes Schoenherr, Maximilian Sporleder, Jan Niederau, Florian Wellmann
{"title":"Repurposing idle wells in the North German Basin as deep borehole heat exchangers","authors":"Nora Koltzer,&nbsp;Johannes Schoenherr,&nbsp;Maximilian Sporleder,&nbsp;Jan Niederau,&nbsp;Florian Wellmann","doi":"10.1186/s40517-024-00315-4","DOIUrl":null,"url":null,"abstract":"<div><p>This study investigates the feasibility to repurpose wells from gas production for geothermal closed-loop application in the North German Basin (NGB). The objective for this research topic is to extend the value-added chain of idle wells by re-completion as coaxial deep borehole heat exchangers as an efficient way to produce green energy without drilling new wells by saving the carbon emission and costs of building a new geothermal well. With numerical models of two typical geological settings of the NGB and two different completion schemes, it is possible to simulate the thermal performance over a lifetime of 30 years. The calculated heat extraction rates range from 200 to 400 kW, with maximum values of up to 600 kW. Sensitivity analyses demonstrate that re-completion depth and injection temperature are the most sensitive parameters of thermal output determination. The heat demand around the boreholes is mapped, and heat generation costs are calculated with heating network simulations. The initial production costs for heat are comparable to other renewable energy resources like biomass and competitive against gas prices in 2022. This study highlights available geothermal resources’ environmental and economic potential in already installed wells. The application has almost no geological and no drilling risks and may be installed at any idle well location.</p></div>","PeriodicalId":48643,"journal":{"name":"Geothermal Energy","volume":"12 1","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2024-09-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://geothermal-energy-journal.springeropen.com/counter/pdf/10.1186/s40517-024-00315-4","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geothermal Energy","FirstCategoryId":"89","ListUrlMain":"https://link.springer.com/article/10.1186/s40517-024-00315-4","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

Abstract

This study investigates the feasibility to repurpose wells from gas production for geothermal closed-loop application in the North German Basin (NGB). The objective for this research topic is to extend the value-added chain of idle wells by re-completion as coaxial deep borehole heat exchangers as an efficient way to produce green energy without drilling new wells by saving the carbon emission and costs of building a new geothermal well. With numerical models of two typical geological settings of the NGB and two different completion schemes, it is possible to simulate the thermal performance over a lifetime of 30 years. The calculated heat extraction rates range from 200 to 400 kW, with maximum values of up to 600 kW. Sensitivity analyses demonstrate that re-completion depth and injection temperature are the most sensitive parameters of thermal output determination. The heat demand around the boreholes is mapped, and heat generation costs are calculated with heating network simulations. The initial production costs for heat are comparable to other renewable energy resources like biomass and competitive against gas prices in 2022. This study highlights available geothermal resources’ environmental and economic potential in already installed wells. The application has almost no geological and no drilling risks and may be installed at any idle well location.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
将北德意志盆地的闲置水井重新用作深井热交换器
本研究调查了在北德盆地(NGB)将天然气生产井重新用于地热闭环应用的可行性。该研究课题的目标是通过重新完井作为同轴深井热交换器来延长闲置井的增值链,从而节省碳排放和建造新地热井的成本,作为一种不钻新井而生产绿色能源的有效方法。利用 NGB 两种典型地质环境的数值模型和两种不同的完井方案,可以模拟 30 年使用寿命内的热性能。计算得出的热提取率为 200 至 400 千瓦,最大值可达 600 千瓦。敏感性分析表明,再完井深度和注入温度是确定热输出的最敏感参数。绘制了钻孔周围的热需求图,并通过供热网络模拟计算了制热成本。热量的初始生产成本与生物质能等其他可再生能源相当,与 2022 年的天然气价格相比具有竞争力。这项研究强调了已安装水井中可用地热资源的环境和经济潜力。该应用几乎没有地质风险和钻井风险,可安装在任何闲置的井位。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Geothermal Energy
Geothermal Energy Earth and Planetary Sciences-Geotechnical Engineering and Engineering Geology
CiteScore
5.90
自引率
7.10%
发文量
25
审稿时长
8 weeks
期刊介绍: Geothermal Energy is a peer-reviewed fully open access journal published under the SpringerOpen brand. It focuses on fundamental and applied research needed to deploy technologies for developing and integrating geothermal energy as one key element in the future energy portfolio. Contributions include geological, geophysical, and geochemical studies; exploration of geothermal fields; reservoir characterization and modeling; development of productivity-enhancing methods; and approaches to achieve robust and economic plant operation. Geothermal Energy serves to examine the interaction of individual system components while taking the whole process into account, from the development of the reservoir to the economic provision of geothermal energy.
期刊最新文献
Feasibility of coaxial deep borehole heat exchangers in southern California Controls of low injectivity caused by interaction of reservoir and clogging processes in a sedimentary geothermal aquifer (Mezőberény, Hungary) Density of pure and mixed NaCl and CaCl2 aqueous solutions at 293 K to 353 K and 0.1 MPa: an integrated comparison of analytical and numerical data Modeling unobserved geothermal structures using a physics-informed neural network with transfer learning of prior knowledge Methods of grout quality measurement in borehole exchangers for heat pumps and their rehabilitation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1