Tewe Heemstra, Marc van der Schans, Joanna Gibas, Jean-Paul M. G. Linnartz, Roger Delnoij
{"title":"Ceiling-Mounted CO2 Sensing: Effect of Location and Stratification Temperature","authors":"Tewe Heemstra, Marc van der Schans, Joanna Gibas, Jean-Paul M. G. Linnartz, Roger Delnoij","doi":"10.1155/2024/1840021","DOIUrl":null,"url":null,"abstract":"<p>Carbon dioxide is an important parameter for indoor air quality (IAQ) monitoring and demand controlled ventilation (DCV). Usually, CO<sub>2</sub> sensors are wall-mounted at 0.9–1.8 m (3–6 ft) height as prescribed by LEED, although ASHRAE standards seemed to relax this requirement. In this work, we investigate whether positioning these sensors in the ceiling is effective and advantageous. We studied CO<sub>2</sub>-level measurements for HVAC control in configurations with mixing ventilation and found that CO<sub>2</sub> from human exhalations experiences buoyancy from several factors. We calculated buoyancy from air properties, and we introduced the notion of “<i>stratification temperature</i>” for exhaled air. By simulation, we test the sensitivity to temperature, and we conducted in situ in vivo measurements to acquire more detailed insights in the feasibility of ceiling sensor positions. <i>Buoyancy calculations</i> show that in exhaled air, the positive buoyancy of H<sub>2</sub>O approximately compensates for the negative buoyancy of CO<sub>2</sub>, so that thermal buoyancy is the most dominant factor. Exhaled air, containing CO<sub>2</sub> to be measured, will rise towards a ceiling that has a temperature below the stratification temperature. Computational fluid dynamics (CFD) simulations of a small office space indicate that this can also be the case in the presence of air flows induced by a mechanical ventilation system. The <i>measurement results</i> support that using “<i>properly mounted</i>” CO<sub>2</sub> sensors in the ceiling gives lower variability in CO<sub>2</sub> measurements and faster response than wall-mounted sensors and yields slightly higher values than wall sensors. Our results highlight the need to update the standards and regulations for sensing CO<sub>2</sub> to include ceiling-mounted sensors.</p>","PeriodicalId":13529,"journal":{"name":"Indoor air","volume":"2024 1","pages":""},"PeriodicalIF":4.3000,"publicationDate":"2024-09-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1155/2024/1840021","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Indoor air","FirstCategoryId":"93","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1155/2024/1840021","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CONSTRUCTION & BUILDING TECHNOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Carbon dioxide is an important parameter for indoor air quality (IAQ) monitoring and demand controlled ventilation (DCV). Usually, CO2 sensors are wall-mounted at 0.9–1.8 m (3–6 ft) height as prescribed by LEED, although ASHRAE standards seemed to relax this requirement. In this work, we investigate whether positioning these sensors in the ceiling is effective and advantageous. We studied CO2-level measurements for HVAC control in configurations with mixing ventilation and found that CO2 from human exhalations experiences buoyancy from several factors. We calculated buoyancy from air properties, and we introduced the notion of “stratification temperature” for exhaled air. By simulation, we test the sensitivity to temperature, and we conducted in situ in vivo measurements to acquire more detailed insights in the feasibility of ceiling sensor positions. Buoyancy calculations show that in exhaled air, the positive buoyancy of H2O approximately compensates for the negative buoyancy of CO2, so that thermal buoyancy is the most dominant factor. Exhaled air, containing CO2 to be measured, will rise towards a ceiling that has a temperature below the stratification temperature. Computational fluid dynamics (CFD) simulations of a small office space indicate that this can also be the case in the presence of air flows induced by a mechanical ventilation system. The measurement results support that using “properly mounted” CO2 sensors in the ceiling gives lower variability in CO2 measurements and faster response than wall-mounted sensors and yields slightly higher values than wall sensors. Our results highlight the need to update the standards and regulations for sensing CO2 to include ceiling-mounted sensors.
期刊介绍:
The quality of the environment within buildings is a topic of major importance for public health.
Indoor Air provides a location for reporting original research results in the broad area defined by the indoor environment of non-industrial buildings. An international journal with multidisciplinary content, Indoor Air publishes papers reflecting the broad categories of interest in this field: health effects; thermal comfort; monitoring and modelling; source characterization; ventilation and other environmental control techniques.
The research results present the basic information to allow designers, building owners, and operators to provide a healthy and comfortable environment for building occupants, as well as giving medical practitioners information on how to deal with illnesses related to the indoor environment.